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ABSTRACT

Motivation:Our purpose is to develop a statistical modeling approach

for cancer biomarker discovery and provide new insights into early

cancer detection. We propose the concept of dependence network,

apply it for identifying cancer biomarkers, and study the difference

between the protein or gene samples from cancer and non-cancer

subjects based on mass-spectrometry (MS) and microarray data.

Results: Three MS and two gene microarray datasets are studied.

Clear differences are observed in the dependence networks for

cancer and non-cancer samples. Protein/gene features are examined

three at one time through an exhaustive search. Dependence networks

are constructed by binding triples identified by the eigenvalue pattern

of the dependence model, and are further compared to identify

cancer biomarkers. Such dependence-network-based biomarkers

show much greater consistency under 10-fold cross-validation than

the classification-performance-based biomarkers. Furthermore, the

biological relevance of the dependence-network-based biomarkers

using microarray data is discussed. The proposed scheme is shown

promising for cancer diagnosis and prediction.

Availability:Seesupplements: http://dsplab.eng.umd.edu/~genomics/

dependencenetwork/

Contact: qiupeng@umd.edu

1 INTRODUCTION

In genomics studies, great efforts have been made to develop the

gene regulatory network using microarray gene expression data, as

reviewed in Someren et al., 2002. Recently, it is believed that it is

the proteomic data and the collective functions of proteins that

directly dictate the phenotype of the cell and, thus, are more accu-

rate in interpreting the cause of biological phenomenon. Therefore,

proteomics, the large-scale study of protein function and expression,

is an emerging field for the discovery and characterization of regu-

lated proteins or biomarkers in different diseases in the post-genome

era. During cancer development, the cancerous cells may release

unique proteins and other molecules, which may be regarded as

early biomarkers. Here biomarkers are defined as the alternations of

patterns at the cellular, molecular or genetic level. Caused by the

presence of specific diseases, these biomarkers normally serve as

the indicators of diseases. Correctly identifying protein biomarkers

for cancer holds enormous potential for the early detection of cancer

and effective treatments. However, due to the complicate nature of

protein functions, it is a research topic with significant challenge.

For the analysis of protein samples, mass spectrometry (MS)

technologies have become increasingly important tools (Diamandis,

2004). MS is able to convert proteins or peptides to charged pieces

that can be separated on the basis of the mass-to-charge ratio (m/z).

There are several types of MS ionization methods currently avail-

able, (Budzikiewicz, 2005), including surface enhanced laser des-

orption ionization (SELDI), electrospray ionization (ESI) and

matrix-assisted laser desorption ionization (MALDI). The produced

protein or peptide spectra are then analyzed for different purposes,

such as identifying proteins via peptide mass fingerprints, cancer

classification, etc. Until very recently, it has also been applied for

cancer biomarker identification, but only simple classification-

based approaches were studied. For instance, in Li et al. (2002),

a panel of three biomarkers were selected using the linear combina-

tion based on unified maximum separability analysis (UMSA) to

best separate cancer and normal samples.

In Qiu et al. (2005), we developed an ensemble dependence

model for cancer classification based on microarray gene expression

data. It is noted that the proposed method yields very promising

classification performance in gene expression data. To further

explore the dependence model, in this paper, we present the concept

of dependence network, and apply it for biomarker identification.

The dependency revealed by the dependence network provides

some insight into the functional interaction relationships between

genes and proteins. With the dependence network, we can explore

the functionalities of the underlying biological system as a whole.

The learned dependence network may play an indispensable role in

understanding the underlying system, especially as the starting point

to further interpret the behaviors and properties of the system. For

instance, in this study, as we examine how the dependence network

structure evolves when cancer develops in different stages, we could

gain insights into the mechanisms of cancer development. In addi-

tion, since finding accurate cancer biomarkers is of crucial impor-

tance to early diagnosis and effective treatments, to address the

problem of identifying biomarkers, we propose to construct the

dependence networks under different cases (e.g. cancer, normal,

different cancer stages) and identify cancer related biomarkers

based on these constructed dependence networks.

This paper is organized as follows. In Section 2, we describe the

basic concepts of the dependence model and present the idea of

dependence network. Then, in Section 3, the classification-

performance-based biomarkers and dependence-network-based�To whom correspondence should be addressed.
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biomarkers are examined based on protein MS datasets. In Section 4,

a gene microarray dataset for gastric cancer is examined in detail to

show the applicability of the dependence network for genes and to

demonstrate the biological evidence which supports the proposed

algorithm. The biological relevance of identified biomarkers is

discussed. Finally, the conclusions are presented in Section 5.

2 DEPENDENCE MODEL AND DEPENDENCE
NETWORK

As mentioned earlier, the concept of ensemble dependence model

(EDM) for cancer classification using microarray gene expression

data is proposed in Qiu et al. (2005). In this section, we first review

the dependence model. Then we will discuss the eigenvalue pattern

of the dependence model, and focus on the concept of dependence

network.

2.1 Dependence model

The dependence model focuses on exploring and modeling the

group dependence relationship. Given several gene/protein groups

or a set of individual genes/proteins, we regard each group or each

individual as one feature. Without any prior knowledge, we assume

that each feature is, to some extent, dependent on all the other

features. Linear dependence relationship is studied, where each

dependence relationship is described by a weight aij. The so-called

self-regulation is assumed to be zero, e.g. aii ¼ 0, i ¼ 1, 2, 3.

Suppose there are M features in total, the dependence relation-

ships between the M features can be expressed as the following

linear equations, for i ¼ 1, . . . ,M:

xi ¼
X

j2f1‚ ���‚Mg‚ j6¼i

aijxj þ ni‚ ð1Þ

where, aij form the dependence matrix; xi, i ¼ 1, 2, . . . ,M, are

the features’ expression data. There is a noise-like term, which

could be contributed by the model mismatch and the measurement

uncertainty from experiment. The dependence matrix and statistics

of the noise term can describe the expression data, and thus be used

to distinguish cancer and normal samples.

For the purpose of classification, given selected features, the

dependence matrices and the statistics of the noise-like terms can

be estimated from cancer and normal training samples, respectively.

The estimated normal and cancer dependence models form a super-

vised classifier which can then be used for classification. For each

testing sample, the maximum likelihood (ML) decision rule is

applied to predict whether it is cancer or normal, that is whether

the testing sample fits the cancer model better or fits the normal

model better. (Detail descriptions of estimating the dependence

model and classification can be found in supplements.)

2.2 Eigenvalue pattern of dependence model

In the previous subsection, the dependence model is described by

Equation (1). The dependence matrix and noise statistics are used

to model the expression data. However, it is difficult to tell the

dependence relationship from the model parameters. Therefore,

we propose to use an easy term, the eigenvalues, to describe the

dependence relationship.

In the dependence model, the ideal case is defined when the noise-

like term is zero in Equation (1), meaning the features’ expression

profiles are completely linearly dependent. In this ideal case, taking

the case of three features, for example, the dependence matrix will

have a special structure as

Aideal ¼
0 a1 a2
1
a1

0 � a2

a1
1
a2

� a1

a2
0

2
4

3
5‚ ð2Þ

for some non-zero numbers a1 and a2. It is proved that the eigen-

values of the above matrix are 1,1,�2, no matter what are the values

of ai, i¼ 1, 2. For a more general case where we have M features, we

note that the eigenvalues of the M-by-M matrix Aideal are always

{1,1, . . . , 1,�(M�1)}. (proof in supplements)

Based on the ideal case, we gradually introduce larger and larger

random variations, to make the features’ expression profiles more

and more independent. We examine how the eigenvalue pattern

changes as the features’ expression become more and more inde-

pendent. Take the case of three features as example, to simulate

the ideal case, an artificial dataset is generated, which contains

3 features and 100 samples. The expression of the three features

are linearly dependent. As mentioned above, the corresponding

dependence matrix will have a special structure, as in Equation

(2), with eigenvalues 1,1,�2. Then, random variation is added to

the ideal expression data, to make them more and more independent.

The variation level is controlled by the variation to signal ratio, the

energy of the added variation over the energy of the ideal expres-

sion. At each variation level, 1000 different realizations of the

random variation are added to the ideal case. For each realization,

the dependence matrix is estimated, and the eigenvalues of the

dependence matrix are calculated. The mean and standard deviation

of each eigenvalue (the largest eigenvalue, the smallest eigenvalue

and the middle eigenvalue) are calculated at each variation level. In

Figure 1, the mean of each eigenvalue is plotted in the solid lines,

while the dashed lines represent the mean ± standard deviation.

As shown in Figure 1, from the ideal case, as the features’ expres-

sion profiles suffer more and more random variations, as the fea-

tures’ expression become more and more independent, the

eigenvalues of their dependence matrix will change and follow

the trends in Figure 1. It is noticed that, the eigenvalue pattern is

closely related to the dependence relationship, especially the small-

est eigenvalue. In this three-features example, when the expression

profiles are linearly dependent, the smallest eigenvalue is �2. When

the dependence relationship become weaker and weaker, the small-

est eigenvalue increases, and eventually saturate to ��0.7. Further-

more, the small standard deviation indicates that the eigenvalue

pattern is a very consistent indicator of the dependence relationship.

Therefore, we can use the smallest eigenvalues to describe the

strength of dependence relationship among examined features,

meaning how dependent they are, or how closely related they are.

2.3 Dependence network

The functionality of a protein is not solely characterized by its own

structure. Its surroundings and interacting proteins also play impor-

tant roles in determining the protein’s function. In short, the protein

interaction network can provide detailed functional insights of pro-

teins. Moreover, the protein interaction network is also the basis for

finding biological signaling pathways for diseases, which are impor-

tant in understanding the mechanism of diseases (Walhout and

Vidal, 2001). In this study, we propose to apply the dependence

model for dependence network construction.

Dependence network
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A dependence network is a set of components, such as protein

MS peak features in our study, and linear dependence interactions

among them that collectively carry out specific functions. In

the dependence network, each connection represents an inter-

component dependence relationship, with an associated weight indi-

cating to what extent the connected components are related. In the

following, we describe how a dependence network is constructed.

Since, the eigenvalue pattern is a consistent indicator of the

dependence relationship, if we examine three individual MS fea-

tures at one time, through an exhaustive search, we can find all

closely related feature triples, the ‘binding triples’. The elements in

each binding triple share a strong dependence relationship, which

indicates that they have a strong influence on one another in the

protein interaction network. Take an ovarian cancer MS dataset as

an example. For the normal case, we pick a subset of normal sam-

ples, examine all possible feature triples, estimate a dependence

matrix and calculate the eigenvalue pattern for each feature triple. A

threshold �1.3 is applied. If the smallest eigenvalue of a feature

triple is lower than the threshold, there exists a strong dependence

relationship within the triple. We call this kind of triples the

‘binding triples’. Similar analysis is applied to cancer samples.

In the normal case, 512 triples pass the threshold; while in the

cancer case, 436 triples pass the threshold. Moreover, there are

only 31 triples in the overlap between normal and cancer cases.

The results suggest that, from healthy to cancerous, some depen-

dence relationships among proteins are disabled; while some other

dependence relationships are activated. The small overlap indicates

that, from healthy to cancerous, the overall dependence relationship

goes through a major change.

The dependence network is constructed from the binding triples.

As in graph theory, the topology of an n-node network can be

represented by an n · n adjacency matrix D. If feature i and feature

j both appear in a binding triple, it is suggested by the dependence

model that feature i and feature j are closely related. And we will

count once for Dij, the connection between feature i and feature j.

Basically, we look at the binding triples, count the appearance of all

feature pairs, and form an adjacency matrix D. Then, the adjacency

matrix D is normalized by the total number of binding triples. Each

element Dij is a confidence value, which indicates the importance

and strength of the connection between feature i and feature j. We

call network D the dependence network. For the purpose of bio-

marker identification, we propose a simple way below to detect

biomarkers which represent the largest topology change under dif-

ferent situations. The dependence networks of normal case (Dnormal)

and cancer case (Dcancer) can be built based on normal samples and

cancer samples, respectively. Note that each element of the matrix

Dnormal – Dcancer corresponds to the change of weight between a pair

of nodes, and each column (or row) corresponds to the change of all

the connections related to one node. Therefore, mathematically, by

examining the norm of all the columns (or rows) of Dnormal – Dcancer,

we are able to see which features go through a large topology

change from normal to cancer and, thus, are potentially biomarkers.

We call them the dependence-network-based biomarkers. For the

purpose of visualization, the dependence networks can be presented

as shown in Figure 2, where strong dependence relationship is

reflected in small distance between connected nodes. The length

of each connection is defined to be inversely proportional to the

confidence value. Because the confidence values are normalized,

through 1/Dij, features with strong dependence relationship will

locate close to each other, while features with weak dependence

relationship will be far apart. From Figure 2, we are able to visually

identify important core nodes which are indicated by drawing

circles around. In the following section, we can see that both the

mathematical identification criterion and the visual inspection yield

similar biomarkers.

3 BIOMARKER IDENTIFICATION

In this section, there are three protein mass spectrum datasets under

investigation, one ovarian cancer dataset, with 25 normal samples

and 24 cancer samples (Tibshirani et al., 2004), one prostate cancer

dataset, with 81 normal samples, 84 early stage cancer samples and

84 late stage cancer samples (Adam et al., 2002), and one liver

cancer dataset, with 176 cancer samples and 181 normal samples

(Ressom et al., 2005). (Data is available in supplemental website).

All three MS datasets are examined in detail. However, due to page

limit, only the results for the ovarian cancer dataset and prostate

cancer dataset are shown in this section. Other results can be found

in the supplements. Because of the noisy nature of mass spectrum

(MS) datasets, proper preprocessing of MS data is needed before

analysis. The details of preprocessing is available in the supple-

ments. After preprocessing, peaks in the mass spectra are identified

as features for further analysis. Since not all peak features are

informative in understanding the difference between cancer and

normal samples, feature selection is performed to exclude irrelevant

peaks. We apply the selection criterion used in Gloub et al., 1999.

In the following discussion, the 50 top-score peak features are

examined for biomarker identification.

3.1 Classification-performance-based biomarkers

In our early works, the concept of ensemble dependence model was

applied to classify microarray gene expression data, yielding excel-

lent classification performance. In this study, we apply the depen-

dence model to build a supervised classifier, examine individual

0 0.5 1 1.5
–3

–2.5

–2

–1.5

–1

–0.5

0

 0.5

1

1.5

Variation to Signal Ratio

E
ig

en
va

lu
es

Fig. 1. The horizontal axis is variation level, which indicates how noisy

the three cluster expression profiles are. As the features’ expression profiles

become more noisy, the eigenvalues of the corresponding dependence matrix

will change, following the above curves.
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protein mass features, and use their classification performance as

biomarker identification criterion. (details available in supplements)

We examine three features at one time, and apply the dependence

model for classification. Through an exhaustive search, all possible

feature triples are examined, and the classification performance

is recorded as a metric. Triples with classification accuracy

>95% are considered to be informative triples. Features that fre-

quently appear in the informative triples are regarded as impor-

tant cancer biomarkers. These are biomarkers identified based

on the criterion of classification performance. We call them the

classification-performance-based biomarkers.

First, we examine the ovarian cancer MS dataset. To ensure

reproducibility of the identified biomarkers, we apply a strategy

similar with 10-fold cross-validation, where the ovarian cancer

dataset is divided into 10 parts; 9 parts are used for model learning

(training) and the one left is used for validation (testing). In each of

the 10 iterations, we search for biomarkers based on different

choices of training and testing samples. For each iteration, through

an exhaustive search, the classification performance of all possible

feature triples are examined to find informative triples, and the top

10 highest frequently appeared features are considered as biomark-

ers. Therefore, in each of the 10 iterations, based on different train-

ing and testing set, 10 biomarkers are identified. We examine the

biomarkers identified by different data to assess the consistency of

the identification criterion. The result is that, only three features are

commonly identified as biomarkers by �7 out of the 10 iterations.

Figure 3a shows the histogram of the identified biomarkers, where

the horizontal axis is the feature indexes, and the vertical axis shows

how many times one feature is identified during the 10-fold itera-

tions. From the widely spread histogram, we can conclude that the

result is not quite consistent.

We further examine the prostate MS dataset for two cases: normal

samples versus early stage cancer samples, and normal samples

versus late stage cancer samples. Our main purpose in analyzing

this dataset is to examine the possible difference between dominant

biomarkers in early cancer stage and late cancer stage. Then we

examine the liver cancer MS dataset. Similar with above analysis,

10-fold cross-validation is applied. Again, every iteration, top 10

features that most frequently appeared in informative triples are

considered as biomarkers. The histograms of identified biomarkers

are shown in supplements. From the results, we again observe that

the classification-performance-based criterion lacks consistency

under 10-fold cross-validation.

3.2 Dependence-network-based biomarkers

in ovarian cancer dataset

In the ovarian cancer dataset, we examine the selected 50 features

three at one time. Through an exhaustive search, the dependence

relationship of all feature triples are examined to find binding tri-

ples. From normal samples, the binding triples of normal case are

found, and we build a dependence network for the normal case

Dnormal. From cancer samples, the binding triples of cancer case

are found, and we build a dependence network for the cancer

case Dcancer. By examining the norm of all the columns of the matrix

Dnormal � Dcancer, we are able to see which features go through a

large topology change from normal to cancer, and identify them as

dependence-network-based biomarkers. Similar to the previous

subsection, 10-fold cross-validation is conducted. For each itera-

tion, Dnormal and Dcancer are calculated and compared, and 10

features with large topology changes are considered as biomarkers.

Ten features are commonly identified as biomarkers by �7 out of

the 10 iterations. They are features 2, 11, 17, 20, 21, 28, 29, 33, 42

and 49. Figure 3b shows histogram of the identified biomarkers.

From this figure, we can see that the dependence-network-based

criterion yields much more consistent results, compared with the

classification-performance-based criterion. Another observation is

that, if we apply a simple differential method, such as t-test, for

biomarker identification, the identified biomarkers will be features

with indexes �40–50 (since the pre-selection 50 features are based

on t-test). From Figure 3, we can see that the classification-

performance-based biomarkers have high correlation with the

simple differential method. However, the dependence-network-

based criterion identifies many biomarkers that are not simply

the most differentially expressed features. The results indicate that,

the dependence-network-based biomarker identification criterion

Normal case

(a) (b)

Cancer case

Fig. 2. Dependence networks for normal and cancer cases in the ovarian cancer MS dataset. (Isolated nodes are omitted.) For the purpose of illustration,

the circles are used to indicate the core features, which are obtained through visual inspection.

Dependence network
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yields much more information than the simple differential method

and the performance-based criterion.

In Figure 2, the dependence networks for normal and cancer cases

are drawn, where we can see the important features in the normal

and cancer dependence networks through visual inspection. In the

normal case, features 11, 17, 20, 29, 30 and 33 are important core

features. They have rich dependence relationships with lots of other

features. However, in the cancer case, there are more core features

2, 9, 11, 17, 20, 21, 28 and 42. From normal case to cancer case,

some unimportant features in normal case become core features in

cancer case, especially features 2, 21, 28 and 42; while some core

features in normal case become deactivated in cancer case, such as

features 29, 30 and 33. These core features are strongly suggested to

be biomarkers in ovarian cancer. It is our intention to investigate the

origin and identity of these features.

3.3 Dependence-network-based biomarkers

in prostate cancer dataset

We further examine the prostate MS dataset. From binding triples

of samples from normal, early cancer stage, and late cancer stage,

we build dependence networks Dnormal, Dearly and Dlate, respec-

tively. Based on Dnormal and Dearly, we identify biomarkers for

early stage cancer samples; based on Dnormal and Dlate, we identify

biomarkers for late stage cancer samples. In supplements, we show

the histograms of the identified biomarkers under 10-fold cross-

validation. Consistent with the results in the ovarian cancer dataset,

the dependence-network-based criterion gives more consistent

results for both early stage cancer case and late stage cancer

case than the classification-performance-based criterion. Compared

with a simple differential method, such as t-test, the dependence-

network-based criterion yields more information than the

classification-performance-based criterion.

The dependence networks for normal, early cancer stage and late

cancer stage are drawn in Figure 4. From this figure, we can see

some interesting behaviors of the identified dependence-network-

based biomarkers through visual inspection. For example, feature

34 is not important in normal stage. However, in cancer stages,

it plays a more important role in the dependence network. Features

20 and 24 are more interesting. They are important network nodes

in both normal stage and late cancer stage. However, they are

deactivated in early cancer stage. Features 12, 13 and 16 behave

oppositely: they are activated in early cancer stage only. These

features might be the key to early stage cancer development, and

deserve to be further investigated.

4 DEPENDENCE NETWORK FOR BIOMARKER
IDENTIFICATION IN MICROARRAY DATA

In this section, to illustrate the generality of the proposed schemes

and to demonstrate the biological significance and evidence of the

identified biomarkers in caner pathogenesis and clinical applica-

tions, we examine the gene microarray expression data. In this

section, a gastric cancer microarray dataset (Chen et al., 2003)

and a liver cancer microarray dataset (Chen et al., 2002) are studied

to examine the performance of the two proposed biomarker iden-

tification schemes. Similar with the analysis of the protein MS

datasets, 50 gene features are selected by the selection criterion

in Golub et al. (1999). Biomarkers are identified from the 50

top-score genes.

For the gastric cancer microarray dataset, in order to identify the

classification-performance-based biomarkers, we exhaustively

examine all possible feature triples, and apply the dependence

model for classification. Triples with classification accuracy

>95% are considered to be informative triples. Gene features that

frequently appear in the informative triples are regarded as cancer

biomarkers. 10-fold cross-validation is applied to examine the con-

sistency of the identified biomarkers. In each of the 10 iterations,

10 biomarkers are identified based on different training and testing

sets. The histogram of the identified biomarkers are shown in

Figure 5a. Only one feature is commonly identified as biomarkers

by �7 out of the 10 iterations. The widely spread histogram shows

the lack of consistency of classification-performance-based crite-

rion in the gastric gene microarray data.

(a) (b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

Fig. 3. (a) Shows the histogram of performance-based biomarkers in the ovarian cancer dataset. (b) Shows the histogram of network-based biomarkers of

the ovarian cancer dataset. In both figures, the horizontal axis is the feature indexes, and the vertical axis shows how many times one feature is identified during

the 10-fold iterations. From these figures, we can see that the network-based criterion yields more consistent results than the performance-based criterion.
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The dependence-network-based criterion is also examined under

10-fold cross-validation. For each of the 10 iterations, from a subset

of normal samples, we build a dependence network for normal

case Dnormal; from a subset of cancer samples, we build a depen-

dence network for cancer case Dcancer; then, biomarkers are iden-

tified based on the difference between Dnormal and Dcancer. As

shown in Figure 5b, seven features are commonly identified as

biomarkers by �7 out of the 10 iterations. They are features

10, 26, 31, 37, 41, 42 and 50. From this figure, we again observe

that the network-based criterion yields much more consistent

results than the classification-performance-based criterion. Also,

the dependence-network-based criterion yields more information

than the classification-performance-based criterion, with respect

to the simple differential method t-test. Compared with the results

from protein MS data, the results from microarray show less con-

sistency. This may be because gene microarray experiments have

larger noise than the protein MS experiments.

From Figure 6, we can see the important features in the normal

and cancer dependence networks through visual inspection. In

the normal case, features 8 and 50 are important core features.

However, in the cancer case, there are much more core features

10, 26, 31, 37, 41 and 42. From normal case to cancer case, some

unimportant features in normal case become core features in cancer

case, while some core features in normal case become deactivated in

cancer case. These gene features are strongly suggested to be

biomarkers in gastric cancer.

Below we compare the biomarkers we identified with the hier-

archical clustering result of the original study (Chen et al., 2003)

and discuss their biological significance in gastric caner pathogen-

esis and clinical applications.

The 50 top-score genes we analyzed represent the most significant

changes of gene expression patterns across different cancer patho-

logical types, and correspond to four distinct gene clusters in the

hierarchical clustering result (Chen et al., 2003). Of the 50 genes,

7 are consistently identified as biomarkers during the 10-fold cross-

validation in our study. Table 1 summarizes the function of the

seven genes, six with significantly increased expression levels

and one with decreased expression. Interestingly, the six up-

regulated genes all correspond to the same ECM (extracellular

matrix) cluster, which has highly similar expression pattern across

Normal case

(a) (b) (c)

Early cancer case Late cancer case

Fig. 4. Dependence networks for the prostate cancer dataset: normal, early and late cancer cases. Isolated nodes are omitted for simplicity. For the purpose of

illustration, the circles are used to indicate the core features, which are obtained through visual inspection.
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Fig. 5. (a) Shows the histogram of performance-based biomarkers in the gastric cancer microarray dataset. (b) Shows the histogram of network-based biomarkers

of the gastric cancer microarray dataset. From this figure, we can see that the network-based criterion yields more consistent results than the performance-based

criterion.
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most pathological types. The down-regulated SIDT2 gene, on the

other hand, belongs to a cluster with no assigned function (see

supplements).

The ECM cluster of genes, including many that encode extracel-

lular matrix components, tends to be more highly expressed

in tumors of the diffuse histological type than in those of the

intestinal type. This is consistent with greater propensity of this

group of tumors for invasive growth, often provoking a dense fib-

rous reaction, and a reflection of reciprocal interactions between

tumor and stromal cells that play important roles in tumor biology

(Chen et al., 2003). In fact, three of the six biomarker genes we

identified (SPARC, COL3A1 and THY1) encode proteins of extra-

cellular matrix component or of mediating cell-matrix interactions.

In addition, SULF1 and YARS are either extracellular sulfatase or

secreted cytokine and both are implicated in tumor growth and

progression.

Osteonectin, also known as SPARC, is a non-structural compo-

nent of extracellular matrix-associated matricellular glycoprotein.

Matricellular proteins mediate interactions between cells and their

extracellular environment. Osteonectin is involved in the regulation

of tumor cell growth, differentiation and metastasis. It is produced at

high levels in many types of cancers, especially by cells associated

with tumor stroma and vasculature (Framson et al., 2004).

Osteonectin was suggested as a prognostic marker for several can-

cers, including invasive differentiated stomach adenocarcinoma

(Maeng et al., 2002b), gastric cancer (Inoue et al., 2002), and

Normal case

(a) (b)

Cancer case

Fig. 6. Dependence networks for normal and cancer cases in the gastric cancer microarray dataset. (Isolated nodes are omitted.) For the purpose of illustration, the

circles are used to indicate the core features, which are obtained through visual inspection.

Table 1. Identified biomarkers based on dependence network modeling for gastric cancer

Gene Protein name Feature Expression level Function

name [UniPortKB accession] (node) in cancer samples

SPARC Osteonectin, SPARC precursor [P09486] 42 Up Regulate cell growth through interactions

with the extracellular matrix and cytokines

COL3A1 Type III collagen alpha-1 chain precursor [P02461] 26 Up Components of most soft connective tissues

along with type I collagen

SULF1 Extracellular sulfatase Sulf-1 precursor [Q8IWU6] 50 Up Exhibits arylsulfatase activity and highly specific

endoglucosamine-6-sulfatase activity

YARS Tyrosyl-tRNA synthetase, cytoplasmic (TyrRS) [P54577] 10 Up Protein synthesis; N- and C- terminal fragments

exert cytokine activities

ABCA5 ATP-binding cassette A5 [Q8WWZ7/Q9NY14] 41 Up A member of ABC transporters, reside in

lysosome, its knockout mice develop

lysosomal disease-like symptoms

THY1 Thy-1 membrane glycoprotein precursor [P04216] 31 Up May play a role in cell-cell or cell-ligand

interactions during synaptogenesis; also

involved in maintenance of T cell

homeostasis and T cell responses

SIDT2 SID1 transmembrane family member 2 precursor [Q8NBJ9] 37 Down Multi-transmembrane proteins, involved in

siRNA uptake into cells

The marker genes are mapped to the protein accession numbers in UniProt Knowledgebase (UniProtKB) (Wu et al., 2006).
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malignant melanoma (Bosserhoff, 2006), and was correlated with

metastasis in prostate cancer (Thomas et al., 2000). Furthermore,

osteonectin and type III collagen alpha-1, another marker gene

predicted by the dependence network, were highly expressed in

gastric cancer tissue (Hippo et al., 2002). Marked increases in

expression of osteonectin and six other extracellular matrix

proteins, including collagen type III, were also observed in rat

gastric cancer models (Maeng et al., 2002a).

SULF1 is an extracellular endosulfatase that desulfates cell

surface heparan sulfate proteoglycans (HSPG), thus regulating

the cellular signaling cascades. Dynamic regulation of HSPGs

by sulfatases within the tumor microenvironment can have a dra-

matic impact on the growth and progression of malignant cells.

SULF1 has been implicated in promoting cell proliferation in

bladder cancer and repression of differentiation in the muscle-

invasive tumors, and was suggested as one of the top predictors

for the bladder cancer outcome (Blaveri et al., 2005). SULF1 was

also shown to inhibit tumor growth in hepatocellular carcinoma

(Lai et al., 2006).

The human tyrosyl-tRNA synthetase (TyrRS) is a synthase that

produces two distinct cytokines from the N- and C-terminal frag-

ments (Wakasugi and Schimmel, 1999). It may be involved in a

coordinated mechanism for regulating angiogenesis with a related

synthetase, tryptophanyl-tRNA synthetase (TrpRS), which also

generates two fragments in a similar fashion. While fragments of

TyrRS stimulate angiogenesis, those of TrpRS inhibit this process

(Tzima and Schimmel, 2006). TyrRS and TrpRS are proinflamma-

tory cytokines with multiple activities during apoptosis, angiogene-

sis and inflammation. They also play important roles in cancer

progression, modulating tumor angiogenesis and its escape from

surveillance by immune system (Ivakhno et al., 2004).

ABCA5 is a transmembrane protein in the ABC transporter fam-

ily, and has been shown to reside in lysosomes. ABCA5 gene knock-

out mice develop lysosomal disease-like symptoms (Kubo et al.,
2005). ABCA5 was also identified as a tissue and urine diagnostic

marker for prostate intraepithelial neoplasia.

Thy-1 (CD90) is a small GPI-anchored protein abundant on the

surface of mouse thymocytes and peripheral T cells. Thy-1 is

involved in the maintenance of T cell homeostasis in the absence

of TCR triggering, as well as potentiating antigen-induced T cell

responses induced through TCR (Haeryfar and Hoskin, 2002).

Thy-1 is also an important regulator of cell–cell and cell–matrix

interactions, with important roles in nerve regeneration, metastasis,

inflammation and fibrosis (Rege and Hagood, 2006).

The only down-regulated marker gene is SIDT2, which is a cell

membrane protein that enhances cell uptake of small interfering

RNA (siRNA) (Duxbury et al., 2005), resulting in increased siRNA-

mediated gene silencing efficacy. However, its cellular functions

and roles in cancer are unclear. As a central node in the dependence

network (node 37 in Fig. 6), the cellular functions and roles of

SIDT2 in gastric cancer are worth further investigation.

Taken together, the seven gastric cancer biomarker genes that are

consistently identified by the dependence network modeling

approach have been shown to be biologically relevant in gastric

and other cancers. Of special note is that both SPARC and COL3A1

are concurrently observed in this study (as connected core nodes 42

and 26 in Fig. 6) as well as in several other studies as valuable

biomarkers for gastric cancers. We therefore conclude that our

network modeling approach have provided a novel and consistent

mathematic model to define potential cancer biomarkers, which

imply functional associations or interactions that are important

for the underlying cancer biology.

The liver cancer microarray dataset is also examined, with the

detail results given in the supplements. The learned depen-

dence networks for normal and cancer cases are shown, and we

are investigating the biological significance and evidence of the

identified liver-cancer biomarkers.

5 CONCLUSION

In this study, we propose to construct dependence networks between

protein or gene features. In building the dependence network, the

dependence relationship among features can be indicated by the

eigenvalue pattern. From binding triples found via the desired

eigenvalue pattern, the dependence networks for both cancer and

normal cases are built. From the results of the protein MS datasets

and the gene microarray datasets, we can see clear difference

between the dependence networks for cancer and normal cases.

Biomarkers are identified based on the difference between depen-

dence networks for normal and cancer cases.

In conclusion, we developed a dependence modeling and network

framework to identify cancer biomarkers using protein MS data and

microarray data. The proposed framework provides two schemes

(i.e. classification-performance-based and dependence-network-

based) to identify biomarkers. Based on results from both protein

and gene expression data, we observed that the dependence-

network-based approach provides much more consistent results

in identifying biomarkers, as shown in Figures 3 and 5. This inter-

esting consistency motivates us to further explore the idea of depen-

dence network. In Section 4, in the gastric cancer microarray

dataset, the identified biomarkers are examined with respect to

their biological significance. Several identified biomarkers have

been shown to be valuable biomarkers for gastric cancers in several

other studies. The encouraging results reported above demonstrate

that the proposed dependence modeling and network framework

can facilitate discovery of better biomarkers for different types

of cancer.
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