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Abstract— Dynamic PET (positron emission tomogra-
phy) imaging technique enables the measurement of neu-
roreceptor distributions corresponding to anatomic struc-
tures, and thus allows image-wide quantification of phys-
iological and biochemical parameters. Accurate quantifi-
cation of the concentration of neuroreceptor has been the
objective of many research efforts. Compartment modeling
is the most widely used approach for receptor binding
studies. However, current compartment-model based meth-
ods often either require intrusive collection of accurate
arterial blood measurements as the input function, or
assume the existence of a reference region. To obviate
the need for the input function or a reference region, in
this paper, we propose to estimate the input function. We
propose a novel concept of activity-subspace, and estimate
the input function by the analysis of the intersection of
the activity-subspaces. Then the input function and the
distribution volume parameter are refined and estimated
iteratively. Thus, the underlying parametric image of the
total distribution volume is obtained. The proposed method
is compared with a blind estimation method, Iterative
Quadratic Maximum-Likelihood (IQML) via simulation,
and the proposed method out performs IQML. The pro-
posed method is also evaluated in a brain PET data set.

I. I NTRODUCTION

The fundamental aim of functional imaging such
as positron emission tomography (PET), single photon
emission computed tomography (SPECT) is to extract
quantitative information about physiological and bio-
chemical functions (e.g. physiological parameters) from
medical images. PET is a nuclear imaging technique
relying on the unique physics of radionuclides that
decay via positron emission. PET in dynamic mode
can produce sequential images ofin vivo distribution
of a radioligand over time. PET imaging has found
many clinical applications, with substantial contributions

to neurologic illnesses, oncology, and cardiovascular
disease [1]. For example, using PET and a specific
radioligand, the serotonin transporter (SERT) in the brain
can be quantified to assess the integrity of serotonergic
neurotransmission [2]. Of particular interest in this paper
is the image-wide quantification of the concentration of
neuroreceptor.

For the purpose of neuroreceptor quantification, the
PET time-activity data are commonly analyzed by fitting
to a mathematical model. Compartmental model-based
approaches are the most widely used for tracer kinetic
modeling in dynamic imaging [3], [4]. The compartmen-
tal modeling approaches can be mainly classified into
two categories, namelyinvasiveandnoninvasive, on the
basis of whether arterial blood sampling is required. In
the invasive approaches, a sequence of arterial plasma
samples is used as the input function in the kinetic
model [5], [6]. Though invasive models have some
advantages, arterial plasma samples are often difficult
to obtain or measure accurately, and such invasive mea-
surement represents a limited, but not negligible risk of
complications including thrombosis, infection and nerve
injury [7]. Therefore, there has been increasing interest
in noninvasive techniques.

Noninvasive techniques in the literature can be further
classified depending on whether a reference region is
needed. Examples of reference region based methods
include [8] where the time activity curve (TAC) from
carotid artery regions of interest (ROI) is used as the
input function, and [9], [10] where a two-compartment
model is assumed for the reference region. The reference
region models obviate the need for input function by
obtaining the parameters as a function of the reference
region TAC. Another noninvasive research direction is to
estimate both the kinetic parameters and the input func-
tion simultaneously. For example, in [11], [12], the input
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function is assumed to follow a mathematical formula,
with several parameters to be determined. The param-
eters for the input function and the kinetic parameters
are estimated simultaneously through weighted nonlinear
least square method. In [13], three blind identification
schemes are examined and compared, namely the cross
relations method (CR), the iterative quadratic maximum
likelihood method (IQML) and the eigenvector-based
algorithm (EVAM). These methods estimate kinetic pa-
rameters without requiring the knowledge of the input
function. The input function can be obtained based on
the observed TACs and the estimated kinetic parameters.

In this study, we revisit a novel noninvasive approach
first proposed by our group [14], called the activity-
subspace approach and also referred as intersectional
searching algorithm (ISA) in [15]. The proposed activity-
subspace approach does not assume any reference re-
gions, and thus, falls into the category that estimates both
the kinetic parameters and the input function. Compared
with [11], [12], the proposed activity-subspace approach
does not assume any mathematical structure of the input
function. Different from the methods discussed in [13],
the proposed approach first estimates the input function
through the intersection of activity-subspaces. Then, with
the estimated input function, the distribution volume
parameters are iteratively estimated, and the estimated
input function is refined at the same time. The basic
idea is intuitively explained as follows. Since the TAC
of each voxel is determined by the plasma input function
and the dynamics of this voxel, it can be derived from
the compartmental models that: for each voxel, a two-
dimensional activity-subspace can be defined from its
TAC; the integral of the input function belongs to the
activity-subspace. It is noted that a common input func-
tion is shared by all the voxels. Therefore, theoretically,
given several different voxels and their corresponding
activity-subspaces, the integral of the common input
function belongs to all these different activity-subspaces,
and thus can be estimated by finding the intersection
of the activity-subspaces. Very recently, Naganawa et al
proposed a method, called robust EPISA, for robust ex-
traction of the cumulative integral of the input by jointly
using ISA and clustering, and found successful applica-
tions in real PET analysis [15]. It was shown that the cal-
culated neuroreceptor images by the robust EPISA have
a quality equivalent to that using the measured input after
metabolite correction [15]. However, despite the promise
of EPISA, there are still two disadvantages remained
with the current activity-subspace based approaches: one
is that it is shown to be sensitive to noise; the other is
that the monotonicity of the estimated integral is not
guaranteed. To overcome these two problems, in this

paper, we propose to use a novel clustering algorithm
[16] jointly with the activity-subspace approach, which
can efficiently reduce the noise in PET data. We also
propose an iterative least square procedure that refines
the estimated integral obtained by the activity-subspace
approach, where the monotonicity of the estimated inte-
gral is enforced in the iterative procedure.

This paper is organized as follows. In Section II,
we first describe the models in the voxel domain, in-
cluding the two-compartment model, three-compartment
model and the graphical analysis (GA) plot of [17]; we
then formulate the problem. In Section III, we present
the proposed activity-subspace approach to estimate the
input function and the parametric image of the total
distribution volume. In Section IV, data simulations are
put into operation. The performance of the proposed
scheme is examined using brain PET data sets in Section
V, followed by Discussions and Conclusions.

II. SYSTEM MODEL AND FORMULATION

Accurate estimation of parametric images in neu-
roreceptor studies often requires fitting the TACs to
a mathematical model. Compartment models are the
most popular models used for physiologically based
quantification of the neuroreceptor concentration. In the
literature, thein vivo tracer kinetics are often repre-
sented by a serial compartmental model [3]. Measures
such as binding potential (BP) and distribution volume
(DV) are then often calculated based on the model
parameters. A simple compartment model is the two-
compartment model, as illustrated in Figure 1(a). The
ith voxel within the organ of interest is modeled by
two compartments. One compartmentcp(t) represents
the radiotracer concentration in arterial blood at timet,
and the other represents radiotracer concentration in the
tissue compartmentci(t). The two-compartment model
can be mathematically written as a linear differential
equation:

dci(t)
dt

= ki1cp(t)− ki2ci(t), (1)

where the rate constantski1 and ki2 represents blood-
tissue exchange parameters for theith voxel. Equation
(1) can be integrated and rearranged into the following
form,

∫ T

0
ci(t)dt =

ki1

ki2

∫ T

0
cp(t)dt− 1

ki2
ci(T ). (2)

Another widely used compartment model is the three-
compartment model. For instance, in serotonin trans-
porter imaging, brain regions containing receptors have
the minimal number of three compartments. The three-
compartment model is illustrated in Figure 1(b). The
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(a) (b)

Fig. 1. Two-compartment model and three compartment model for voxeli in the region of interest.

ith voxel within the organ of interest is modeled by
three compartments, wherecp(t) represents radiotracer
concentration in arterial blood,cin(t) is the radioactivity
in the nonspecific binding compartment, andcis(t) is
the radioactivity in specific binding compartment. The
arrows represent the direction by which radioligand can
move between compartments, with model parameters
ki1, ki2, ki3, ki4. Mathematically, Figure 1(b) can be rep-
resented by two linear differential equations:

dcis(t)
dt

= ki3cin(t)− ki4cis(t);

dcin(t)
dt

= ki1cp(t)− (ki2 + ki3)cin(t) + ki4cis(t).

In PET imaging experiments,cis(t) and cin(t) can not
be measured separately. The observed receptor activity
in the ith brain voxel is the total concentrationci(t) =
cis(t)+ cin(t). Following the same derivation as in [18],
the dynamics of each voxeli at time T satisfies the
following equation,

ci(T ) = γi1

∫ T

0

∫ s

0
cp(t)dtds + γi2

∫ T

0

∫ s

0
ci(t)dtds

+γi3

∫ T

0
ci(t)dt + γi4

∫ T

0
cp(t)dt, (3)

where the parametersγi1 ∼ γi4 are uniquely determined
by the parameterski1 ∼ ki4.

In the graphical analysis (GA) plot introduced by
Logan et al. [17], an asymptotically linear relationship
can be observed for the three-compartment model. For
voxel i,

∫ T
0 ci(t)dt

ci(T )
= ViT

∫ T
0 cp(t)dt

ci(T )
+ bi, (4)

where the slopeViT is the total distribution volume
(which is expressed as(ki1/ki2)(1 + ki3/ki4)), and bi

is the intercept which becomes constant forT > t∗.
This linear relationship is asymptotically valid for the
late part of the dynamic PET experiment. By rearranging
equation (4), forT > t∗, we can obtain a form which is
very similar to equation (2):

∫ T

0
ci(t)dt = ViT

∫ T

0
cp(t)dt + bici(T ). (5)

Therefore, This relationship (5) is valid both for the
two-compartment model and for the three-compartment
model whenT > t∗.

In existing literature, assuming that the input function
cp(t) is known, models in (2), (3) and (5) allow esti-
mation of kinetic parameters by multilinear regression
analysis of the voxel TACs [18]. However, in the problem
of interest here, the knowledge of the input functioncp(t)
is not available. Therefore, our goal is to estimate both
the input functioncp(t) and the kinetic parameters.

We now describe the basic idea by first introducing
the discrete version of the model in (5). In practice, the
PET images are generally acquired with increasing time
intervals. Lett = {tl, tl+1, ..., tn} denotes the sampling
time points that are later thant∗. By evaluating the
terms in equation (5) at time points int, we define
the following vectors,ci = [ci(tl), ci(tl+1), ..., ci(tn)]T ,
cint

i = [
∫ tl

0 ci(t)dt,
∫ tl+1
0 ci(t)dt, ...,

∫ tn

0 ci(t)dt]T , and
cint

p = [
∫ tl

0 cp(t)dt,
∫ tl+1
0 cp(t)dt, ...,

∫ tn

0 cp(t)dt]T . Equa-
tion (5) can be written in a vector form,

cint
i = ViT cint

p + bici, (6)

where the super-scriptint represents the single integral
operation. Therefore, in the voxel domain, we can ob-
serve the following relationship for each voxel,

cint
p =

−bi

ViT
ci +

1
ViT

cint
i . (7)

From equation (7), it can be observed that the integral
of the input functioncint

p can be written as the linear
combination of theith voxel’s TAC and the integral of
the ith voxel’s TAC. For theith voxel, we define the
space spanned byci and cint

i as its activity-subspace,
which is of dimension two. From equation (7), the
integral of the input functioncint

p lies in the activity-
subspace of theith voxel. Since a common input function
is shared by all the voxels, the integral of the input
function belongs to the activity-subspaces of all voxels
within the organ of interest. Therefore, we can estimate
cint

p by finding the intersection of the different activity-
subspaces. After obtaining the estimate ofcint

p , we can
apply iterative least square method to iteratively estimate
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the kinetic parameters in equation (7) and refine the
estimate ofcint

p .

III. PROPOSEDSCHEME

In this section, the proposed activity-subspace ap-
proach is described in detail. In order to estimate the
integral of the input function based on the noisy PET
measurements, the problem of finding the intersection
of different activity-subspaces is formulated as an op-
timization problem. To reduce the noise effect, mixture
principal component analysis (mPCA) [19] is employed
to group the voxel TACs into several clusters. Since each
cluster contains voxels with similar TACs and kinetic pa-
rameters, the cluster average TAC will follow the model
in equation (7). Through averaging, the noise effect is
reduced. The activity-subspace approach will operate on
the cluster average TACs, estimating the integral of the
input function by finding the intersection between the
activity-subspaces defined by cluster average TACs.

A. Activity-subspace intersection for estimating the in-
tegral of the input function

In equation (7), assuming thatci and cint
i are noise-

free, we can see that the vectorcint
p lies in the subspace

spanned byci and cint
i , which is defined as voxeli’s

activity-subspace. For any two different voxelsi and
j with different kinetic parameters, ideally the vector
cint

p should belong to both the activity-subspace spanned
by ci andcint

i and the activity-subspace spanned bycj

and cint
j . Equivalently, in the ideal noise-free situation,

the intersection of the two activity-subspaces is an one-
dimensional subspace (a line), which defines the direc-
tion of the vectorcint

p . This observation motivates us to
estimate the vectorcint

p by exploring the intersection of
the activity-subspaces.

Another observation is that, although the direction of
the vectorcint

p can be determined through the intersec-
tion of activity-subspaces, we are not able to determine
the length of the vector. In other words, we are able
to estimate the shape of the curve

∫ T
0 cp(t)dt, but the

amplitude remains unknown. As far as the distribution
volume parametric image is concerned, not knowing
the amplitude will not cause a problem. For example,
if we determine the direction of the vectorcint

p from
the intersection of activity-subspaces and constraint the
length of the vector to be 1, the estimated integral
of input function ĉint

p will be a scaled version of the
integral of the true input function, i.e.̂cint

p = ηcint
p ,

where η is a scalar. If we usêcint
p to estimate the

kinetic parameters in equation (6) using linear regression,
the parameterbi will be estimated accurately, and the

estimated total distribution volumêViT will be scaled
by a factor of 1

η , i.e. V̂iT = 1
ηViT . Since the estimated

total distribution volume is scaled by the same factor for
all voxels, the total distribution volume parametric image
will not be affected. Therefore, in the proposed method,
we constrain the estimated integral of the input function
to be a vector of unit length, i.e.,|ĉint

p | = 1.
In practiceci(t)’s are noisy measurements, and thus

the integral ofci(t) appears as a noise source too. The
noisy nature ofci(t) certainly will affect the precision of
the activity-subspace spanned byci and its integralcint

i

and thus the intersection of the activity-subspaces. As
mentioned above, in the ideal noise-free case, the inter-
section line betweenspan(ci, cint

i ) and span(cj , cint
j )

defines the integral of the input functioncint
p . How-

ever, because of the measurement noise, both activity-
subspaces are disturbed and the intersection line may
no longer exist. Therefore, we propose to approximate
the intersection by the following. In the ideal noise-
free case, the intersection betweenspan(ci, cint

i ) and
span(cj , cint

j ) can be equivalently regarded as a pair of
lines, one in each activity-subspace, that share maximum
correlation. Through a similar methodology, with the
presence of measurement noise, we can find a pair of
lines, such that one belongs tospan(ci, cint

i ), the other
belongs tospan(cj , cint

j ), and this pair of lines share
maximum correlation. The average of this pair of lines
could be a reasonable approximation of the intersection
line in the ideal case, which is the integral of the input
function.

Mathematically, assume that vectorsvi1 and vi2 are
the ortho-normal basis of the subspacespan(ci, cint

i ).
Then, any unit length vectorui in span(ci, cint

i ) can be
written as,

ui = cos(θi)vi1 + sin(θi)vi2 (8)

where θi ∈ [0, 2π). Therefore, the problem of finding
the approximation of the intersection line between two
activity-subspaces can be formulated as the following
optimization problem,

max
θi,θj

uT
i uj

s.t.





ui = cos(θi)vi1 + sin(θi)vi2

uj = cos(θj)vj1 + sin(θj)vj2

θi ∈ [0, 2π), θj ∈ [0, 2π)

(9)

where, vi1 and vi2 are the ortho-normal basis
of the activity-subspacespan(ci, cint

i ), vj1 and vj2

are the ortho-normal basis of the activity-subspace
span(cj , cint

j ). This maximization problem can be
solved by grid search of possible values ofθi andθj over
the range of[0, 2π) (In the current implementation, the
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grid search interval is 0.001, meaning that we examine
θi and θj that take any values which are multiples of
0.001). Assumeθi = θ∗i and θj = θ∗j maximizes the
objective, the correspondingui(θ∗i ) and uj(θ∗j ) are the
pair of lines, from activity-subspaces of voxeli and j,
that maximize the correlation. Note that ifui(θ∗i ) and
uj(θ∗j ) is the solution to the maximization problem in
(9), so does−ui(θ∗i ) and−uj(θ∗j ). We choose one of
the two solutions based on the fact that the elements of
cint

p are all positive. If the number of positive elements is
greater than the number of negative elements in vectors
ui(θ∗i ) anduj(θ∗j ), the integral of the input function is
approximated bŷcint

p = 1
2(ui(θ∗i ) + uj(θ∗j )). Otherwise,

the integral of the input function is approximated by
ĉint

p = 1
2(−ui(θ∗i )− uj(θ∗j )).

B. The clustering of voxels

To yield a fine approximation of the integral of the
input function, it is desirable to reduce the noise level in
the voxel TACs, which are used to define the activity-
subspaces. To achieve this purpose, we cluster the voxels
into several clusters according to their TACs. This idea
is similar with working on the virtual regional TACs
(e.g. each cluster represents a virtual regional TAC,
which is not necessarily a spatially contiguous brain
region). After clustering, each cluster is represented by
the average TAC, based on which the cluster’s activity-
subspace is defined. The integral of the input function
can be estimated from the intersection of the activity-
subspaces of different clusters.

Clustering voxels can be regarded as identifying dif-
ferent voxel activity patterns, where each activity pattern
can be represented by a different underlying model. As
demonstrated in many areas, the idea of mixture Princi-
pal Component Analysis (mPCA) has been a promising
framework to deal with such problems by modeling the
underlying nonlinearity and complexity with a mixture
of local linear sub-models [16]. In our study, we propose
to apply the mPCA approach for clustering.

The concepts in mPCA is related with the PET para-
metric imaging problem as follows. In the mPCA ap-
proach, a set of probabilistic PCA models is introduced
by associating a probability density with the conven-
tional PCA model. Assume there existK clusters of
functionally different voxels, whose activity patterns are
different. mPCA describes each cluster by a probabilistic
PCA model. The relative size of each cluster is modeled
by a set of prior probabilities. Therefore, a voxeli, with
probability p(k) (prior) belongs to thekth cluster, and
thus can be represented by thekth probabilistic PCA
model,

yi = Wkx + µk + εk, (10)

where yi is voxel i’s TAC. x is assumed to be an
independent Gaussian vector with unit variance,x ∼
N(0, I) and dimensionq. The columns of the matrixWk

are theq principal components of the activity pattern
in the kth cluster. The principal components are not
necessarily unitary, so that the energy of each component
can be taken care of in theWk matrix. The parameterµk

represents the mean activity pattern, andεk represents
measurement noise. For the case of isotropic noise,
εk ∼ N(0, σ2

i I), the conditional probability of observing
TAC yi can be written as follows,

p(yi|x, k) = (2πσ2
k)
−d/2e

− 1
2σ2

k

‖yi−Wkx−µk‖2
. (11)

Integrating the above equation over the distribution of
x, we obtain the distribution of observationyi given the
kth probabilistic PCA model,

p(yi|k) =
∫

p(yi|x, k)p(x|k)dx

= (2π)−d/2|Ck|−1/2e−
1
2
(yi−µk)T C−1

k (yi−µk)

(12)
whereCk = σ2

kI +WkW
T
k . Given the prior probabilities

p(k) of the set ofK probabilistic PCA models, according
to Bayes rule, the posterior probability of thekth model
can be expressed as

p(k|yi) =
p(yi|k)p(k)∑K

k=1 p(yi|k)p(k)
. (13)

The posterior probability can be used for the purpose of
clustering.

As in [19], an EM algorithm of mPCA is derived. In
the E-step, given the observed TACs and model param-
eters from previous iteration, the posterior probability
of the kth model can be calculated. In the M-step, the
model parameters are updated based on the previous
model parameters and the posterior probabilities. The
detailed EM algorithm is described in Appendix. When
the algorithm converges, for each voxel, we obtain the
posterior probability of the voxel belonging to each
probabilistic PCA model conditioning on the observed
TAC. Based on the posterior probabilities, voxels are
grouped into clusters. For each cluster, the average TAC
is calculated, based on which the activity-subspace of the
cluster is defined. The integral of the input function is
estimated from the intersection of activity-subspaces of
different clusters, using the method described in section
III-A.

C. Iterative least square for refining the estimated inte-
gral

After voxel clustering, the integral of the input func-
tion is estimated from the intersection of activity-
subspaces defined by the clusters’ average TACs. We
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extend the analysis to the voxel domain to further
improve the accuracy of the estimated integral. Since
each voxel TAC is a function of the same input function,
we explore this property using the iterative least square
method. For each voxeli, the noisy model of (6) can be
expressed as,

ci =
−ViT

bi
cint

p +
1
bi

cint
i +ni = (cint

p , cint
i )

( −ViT

bi
1
bi

)
+ni,

(14)
where the noise termni contains the measurement noise,
the error from numerical integration, and the model
mismatch error due to the asymptotically linear assump-
tion. Define the observation matrixC = [c1, ..., cN ],
S = [cint

p , cint
1 , ..., cint

N ], the coefficient matrixA with
A(1, i) = −ViT /bi, A(i + 1, i) = 1/bi and all other ele-
ments being zero, and the noise matrixN = [n1, ...,nN ].
Combining equation (14) of multiple voxels, we obtain
the block formulation,

C = SA + N. (15)

In order to estimate the kinetic parametersViT , bi, the
least-square (LS) formulation yields the following min-
imization problem:

min
cint

p ,{ViT ,bi}
||C− SA||2F . (16)

Searching for the global minimizer is computationally
prohibitive even for modest number of voxels under
consideration. To achieve an affordable computational
cost, we apply the iterative least square method. The
basic idea is that, we start from the initial estimate of
cint

p based on the intersection of activity-subspaces of
voxel clusters, as described in sections III-A and III-
B. Based on the estimated integral of input function,
the coefficients inA can be estimated by least square
regression. Using the estimate ofA, which is the esti-
mated{ViT , bi} for all voxels, the integral of the input
function can be calculated from equation (7) for each
voxel. The estimate ofcint

p can be updated based on the
calculated integrals from all the voxels. Note that, the
initial estimate is obtained by the intersection of activity-
spaces, where the monotonicity is not guaranteed. In
the iterative least square procedure, the monotonicity
can be easily enforced by updatingcint

p based on the
average of the calculated integrals that are monotonically
increasing. The process iterates until convergence, when
the difference between estimatedcint

p in consecutive
iterations is below a certain threshold.

The minimization problem in (16) has many local min-
imizers. Therefore, in order to solve for the global min-
imizer, a good initialization is required. In our scheme,
the activity-subspace approach is employed to obtain the

initial estimate ofcint
p , which aims at finding the estimate

of cint
p that fits the activity-subspaces defined by several

voxel clusters. We believe that such an initial estimate
is naturally a good choice as it follows the underlying
signal model. During the iterative least square procedure,
we iteratively refine the estimate of the integral of the
input function, the kinetic parameters are estimated at
the same time. (Please note that, although we express the
formulation in matrix form, the estimates are obtained in
a voxel-by-voxel fashion.)

D. Summary of the proposed scheme

In summary the following steps are taken:
• Initialization: We apply the activity-subspace ap-

proach to obtain the initial estimate of the integral
of the input function. More specifically

– Preprocess time activity data and identify vox-
els that belong to the brain region.

– Cluster the voxels TACs intoM clusters using
Mixture Principal Component Analysis. A rea-
sonable value ofM should be chosen. Based
on our observations,M = 2 could be a good
choice. Denote the average cluster TACs asxj ,
j = 1, ..., M , and their single integrals asxint

j .
– For each pair(i, j), where i, j ∈ [1,M ],

the intersection of the activity-subspaces
span(xi,xint

i ) and span(xj ,xint
j ) is obtained

by (9). The intersections are the estimates of
the integral of the input function. The average
of them will serve as the initial estimate ofcint

p .
• Iterative Refinement: With the initial estimate of

cint
p , the iterative least square is applied to further

improve the estimation accuracy. At each iteration,
– Given the estimatedcint

p from the previous iter-
ation, for each voxeli, the coefficientsViT and
bi are estimated using least square regression.

– For each voxel, given the coefficients{ViT ,
bi}, the integral of the input function can be
calculated from equation (7).

– The estimate ofcint
p is updated by the average

of the calculated integrals that are monotoni-
cally increasing. The estimate ofcint

p is then
normalized to a unit length vector.

– Iterate until convergence, the difference be-
tween estimatedcint

p in consecutive iterations
is below a certain threshold.

Note that, if the data dynamic follows the two-
compartment model, equation (6) holds during the entire
experiment. In this case,t∗ = 0 and the integral of the
input function during the entire experiment can be esti-
mated. If the data follow the three-compartment model,
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equation (6) is an asymptotic relationship which holds
for the later duration of the experiment. In this case,
t∗ > 0, and for the integral of the input function, only
the time points later thant∗ can be estimated. The value
of t∗ needs to be carefully chosen. The choice oft∗ is a
trade-off between bias and variance. Since the graphical
analysis (GA) plot is an asymptotical relationship for the
later part of the PET experiment, if we choose a larger
t∗, equations (6) and (7) will better fit the TACs. On the
other hand, since only the time points aftert∗ are used
to define the activity-subspaces, largert∗ will reduce the
available time points and thus decrease the robustness of
the estimated activity-subspaces.

IV. SIMULATION RESULTS

In the previous section, a novel idea of estimating the
input function from activity-subspaces is proposed. In
this section, we examine the performance of the activity-
subspaces approach through simulation.

The time activities of two voxels are simulated by
the three-compartment model. The kinetic parameters of
the simulated voxels arek11 = 3.6247, k12 = 0.0659,
k13 = 0.0306, k14 = 0.0372 and k21 = 4.0716, k22 =
0.0387, k23 = 0.0507, k24 = 0.0229, respectively. The
parameters are derived from a brain PET study of healthy
control subjects using C-11 labeled DASB, as described
in section V. The input function used in the simulation
is shown in Figure 2(a), where the circles indicate the
time points when the input function is sampled. Similar
with the brain PET study in section V, the activity of the
simulated voxels are measured at 18 serial time points,
which are different from the sampling time points of
the input function. Since our vector form formulation in
equation (7) evaluates the integral of the input function
at the time points that correspond to the measured voxel
activity, we integrate the input function and resample it
at the 18 time points of the voxel activity measurement,
as shown in Figure 2(b). Moreover, in section III-A, it
is mentioned that the activity-subspace approach is only
able to estimate the direction ofcint

p (the shape of the
integral of the input function), and the estimated integral
of the input functionĉint

p is constrained to be a unit
length vector. Therefore, a successful estimationĉint

p will
equal to the normalized integral of the input function,
denoted as̄cint

p = 1
|cint

p |c
int
p . The normalized integral of

the input function is shown in Figure 2(c), which is what
we plan to estimate using the activity-subspace approach.
The value of parametert∗ is chosen to bet∗ = 20. In
the simulated data and the real PET data, there are 6
time points aftert∗ = 20. We chooset∗ to be as large
as possible, while guaranteeing enough time points for

estimating the activity-subspaces and the integral of the
input function.

Using the input function in Figure 2(a) and the kinetic
parameters listed above, we simulate the TACs of the
two voxels under the noise free case, shown in Figure
2(d). Base on the noise free TACs and the integral of the
input function, the kinetic parameters in equation (6) can
be obtained through linear regression. We also calculate
the kinetic parameters based on the noise free TACs and
the normalized integral of the input function. The results
are shown in Table I. In this table, we can see that,
the relative ratios between the two voxels’ distribution
volumes in both cases are the same. In the case where
normalized integral of the input function is used, the
calculated distribution parameters of the two voxels are
scaled by the same factor, compared with the case where
the true integral of the input function is used. Therefore,
for the purpose of estimating distribution volume para-
metric image, the knowledge of the normalized integral
of the input function will lead to the same performance
with the case where the true integral of the input function
is known. In the following, the normalized integral of the
input function and the kinetic parameters in the bottom
row of Table I will serve as the ground truth of the
simulation.

In order to examine the impact of noise on the pro-
posed activity-subspace approach, we consider a realistic
noise model. As suggested in [18], the measurement
error variance is proportional to the imaged radioactivity
concentration and is inversely proportional to the scan
duration. Therefore, we consider the noise model that
noise terms are independent Gaussian with variances,

σ2(i, tj) = α
eλtjci(tj)
tj − tj−1

, (17)

for j = 1, ..., n, whereα is a constant determining the
noise level;ci(tj) is the simulated noise-free TAC of
voxel i at time tj ; λ is the radioisotope decay constant.

Here, we define the percent noise level as

√∑n

j=1
σ2(i,tj)∑n

j=1
c′i(tj)2

,

with {c′i(tj)} being the noise-free TAC for voxeli. The
noise levels ranging from0% to 5% are tested in the
simulation.

At each noise level, we simulate 1000 runs, generating
1000 pairs of noisy TACs of the two simulated voxels. In
each run, the activity-subspace approach in section III-
A is used to estimate the integral of the input function
from the noisy TACs. With the estimated integral, the
distribution volumes of the two simulated voxels are
estimated by least square regression of equation (6). The
ratio between the estimated distribution volumes is used
to show the estimation performance. At each noise level,
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Fig. 2. Figure (a) is the input function used in the simulation. Figure (b) is the integral of the input function, resampled at the time points
that correspond to the sampling point of voxel activity. Figure (c) is the normalized integral of the input function. Figure (d) shows the TACs
of the two simulated voxels

voxel 1 voxel 2 ratio
regression based on noise free TACs andV1T = 95.0525 V2T = 294.9598 V1T /V2T = 0.3223

true integral of the input function b1 = −34.5938 b2 = −90.2277
regression based on noise free TACs andV1T = 72123.4 V2T = 223807.7 V1T /V2T = 0.3223
normalized integral of the input function b1 = −34.5938 b2 = −90.2277

TABLE I

K INETIC PARAMETERS OF SIMULATED VOXELS, CALCULATED BASED ON TWO CASES: NOISE FREETACS AND TRUE INTEGRAL OF THE

INPUT FUNCTION; NOISE FREETACS AND NORMALIZED INTEGRAL OF THE INPUT FUNCTION.

we calculate the average and standard deviation of the
ratio from the 1000 simulation runs.

For the purpose of comparison, we implemented the
Iterative Quadratic Maximum-Likelihood (IQML), be-
cause IQML yields the best performance among the three
blind estimation algorithms compared in [13]. There are
both 2-compartment model and 3-compartment model
versions of IQML [20]. Since the simulation is based
on the 3-compartment model, due to the reason of no
model mismatch, the 3-compartment model IQML yields
more accurate result than that of the 2-compartment
model one under noise-free case. However, the estimated
distribution volume in 3-compartment IQML is very
sensitive to noise even when very small noise is added
and can be less accurate than that of the 2-compartment
IQML. We think the intuitive reason is as follows. The
3-compartment model IQML does not directly estimate
the distribution volume and it estimates a set of 4

parameters instead; the distribution volume is calculated
via a complicated function of the estimated parameters
and thus its estimation error can be severely amplified.
Moreover, we believe that the comparison with the 2-
compartment model IQML is more fair, because it has
essentially the same complexity as the Logan plot in
terms of the number of model parameters. Therefore,
we choose to compare the proposed method with the
2-compartment model version of IQML. To ensure that
IQML achieves its best performance, we use the true
kinetic parameters as its initial. The results are shown in
Table II.

In Table II, at the0% noise level, although the integral
of the input function is estimated based on the noise
free TACs, the estimation is not perfect. This is because
of two reasons. First, the activity-subspace approach is
based on the Logan plot, which is an asymptotically
linear relationship for the later part of the TACs. Since
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V1T /V2T Activity-subspace IQML
noise level mean std mean std

0 0.3236 0 0.2801 0
1 0.3247 0.0303 0.2799 0.0092
2 0.3334 0.0592 0.2780 0.0171
3 0.3502 0.0665 0.2759 0.0278
4 0.3675 0.0787 0.2729 0.0387
5 0.3921 0.0782 0.2741 0.0505

True ratioV1T /V2T = 0.3223

TABLE II

MEAN AND STANDARD DEVIATION OF THE RATIO BETWEEN THE

ESTIMATED DISTRIBUTION VOLUMES OF THE TWO SIMULATED

VOXELS.

the noise-free data is simulated based on the three-
compartment model, there is model mismatch between
the true three-compartment model and the Logan plot.
Second, the activity-subspace of a voxel is spanned by
the voxel TAC and its integral. With the 18 available time
points of the voxel TAC, the numerical integration of the
voxel TAC introduces error. For the same reason, IQML
method also gives non-zero error at0% noise level. Since
the IQML method assumes two-compartment model for
the entire TAC, the model mismatch is larger, and thus
a larger error is observed. At0% noise level, since no
noise is added, the estimation results from the 1000 runs
are identical, which results in 0 standard deviation of the
estimation error.

From Table II, we can see that the proposed activity-
subspace is more sensitive to noise. This result is also
confirmed in [15]. In this table, we can see that the IQML
method, although more robust to noise, consistently
generates biased estimates. This is again because of the
model mismatch between the two-compartment model
assumed by IQML and the three-compartment model
based on which the data is simulated. On the other
hand, the propose activity-subspace approach estimates
the integral of the input function, which leads to more
accurate estimates of the relative distribution volume.
The only concern, so far, is the noise sensitivity.

Therefore, in order to obtain reliable estimates using
the activity-subspace approach, the noise level needs to
be kept small. This is our motivation for employing
mPCA clustering. We also apply iterative least square
method to further improve the accuracy of the estimated
integral of the input function and simultaneously esti-
mate the distribution volume parameters. In the following
section, we analyze the data set from a brain PET study,
and demonstrate that the activity-subspace approach, to-
gether with the mPCA and iterative least square methods,
is able to estimate both the integral of the input function
and the distribution volume parametric image.

V. REAL DATASETS

We now examine a brain PET study. The PET data
of healthy control subjects is obtained after intravenous
injection of C-11 labeled DASB, a radioligand used for
imaging the serotonin transporter (SERT). The experi-
mental details are the same as in [2]. In total, 10 subjects
are tested . A dynamic PET study is performed with a GE
Advance PET camera with an axial resolution (FWHM)
of 5.8 mm, and an in plane resolution of 5.4 mm. This
scanner acquires 35 simultaneous slices of 4.25 mm
thickness. A transmission scan is first obtained with twin
10 mCi germanium-68 pin sources for 10 minutes for the
purpose of attenuation correction of the emission scans.
18 serial dynamic PET images are acquired during the
first 95 minutes after injection using the following image
sequence: four 15 sec frames, three 1 min frames, three
2 min frames, three 5 min frames, three 10 min frames,
and two 20 min frames. All PET scans are reconstructed
using the Ramp-filtered back-projection technique in a
128x128 matrix, with a transaxial voxel size of 2x2 mm.
All PET data are corrected for attenuation, injected dose
and radionuclide decay.

For the invasive measurement of the input function, a
radial artery line is placed by an anesthesiologist. During
the PET study arterial blood samples are withdrawn
every 5-7 seconds during the first two minutes, then
with increasing time intervals until the end of study 95
minutes post injection. Exact times of blood sampling
are registered. The blood samples are centrifuged and
plasma activities are counted in a gamma counter cross-
calibrated with the PET scanner every day. The exact
time difference between the start of camera and the start
of gamma counter is registered for decay correction. The
input function is corrected for metabolized radioligand
activity. For this purpose, 2 ml arterial plasma samples
are obtained 5, 15, 30, 60 and 90 minutes post injection.
The extent of metabolism of C-11 DASB is determined
using high performance liquid chromatography (HPLC).
Missing data points of the correction function that de-
scribes the percent unmetabolized tracer are obtained by
bi-exponential interpolation [2].

For the dynamic brain PET image data, we first
perform preprocessing to identify voxels that belong to
the brain region. A simple masking method is applied
to sketch out the brain region. Based on the 18 dynamic
PET images of the 18 time points, the sum of intensities
of the observed TACs for all voxels are calculated. Vox-
els with intensities less than5% of the highest intensity
voxel are regarded as non-scalp voxels and discarded.
The remaining voxels are considered as the brain region
for further estimation of the integral of the input function
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Fig. 3. Results from subject 2. Figure (a) shows the normalized the integral of the measured input function, the estimated integral of
the input function based on activity-subspaces, and the refined results by further applying iterative least square.Figure (b) is the scatter plot
of the estimated distribution volumes based on the measured and estimated integrals. Figure (c) shows the distribution volume parametric
image of slice 15 based on the measured integral. Figure (d) shows the distribution volume parametric image based on the estimated integral.
Figure (e) is the difference between Figures (c) and (d). The images shown are after 3-by-3 neighborhood median filtering.
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and the distribution volume parametric image.
After preprocessing, the brain region is identified.

In section IV, it is shown that, the proposed activity-
subspace approach is sensitive to noise. Therefore, we
cannot directly apply the activity-subspace approach
based on the noisy voxel TACs. To reduce the noise, we
take voxels from the brain regions of all slices, and apply
the mPCA approach in section III-B to group the brain
voxel TACs into two clusters. The activity of each cluster
is represented by the average of voxel TACs within this
cluster. Through averaging, the noise is reduced. Then,
the integral of the input function is estimated using
the activity-subspace approach, which operates on the
cluster average TACs. In Figure 3(a), we use the data
for subject 2 as an example. The estimated integral of
the input function is shown by a solid line labeled with
stars. The normalized integral of the measured input
function is shown by the solid line labeled with circles.
To improve the accuracy of the estimated integral of
the input function, the iterative least square method in
section III-C is applied to iteratively refine the estimated
integral of the input function based on the TACs of all
brain voxels. In Figure 3(a), the refined estimate of the
integral is shown by the solid line labeled with triangles.

After obtaining the estimated integral of the input
function, we further estimate the relative distribution
volumes. Based on the estimated integral of the input
function, the relative distribution volume parameters are
obtained by linear regression of equation (7) for each
voxel [18]. For comparison, the relative distribution
volume parameters are also calculated based on the
normalized integral of the measured input function. In
Figure 3(b), the scatter plot of the relative distribution
volume parameters is shown, where each dot corre-
sponds to one voxel, the horizontal and vertical axes
represent the estimated parameters with the measured
and estimated integral of the input function. The scatter
plot closely follows the 45 degree line, which indicates
high estimation accuracy. To quantify the estimation
accuracy, we compute the normalized relative distance
(PM) between the true and estimated parametric images.
PM is defined to compare the two parametric images,

PM =
1
N

N∑

i=1

|(V̂iT − V̄iT )/V̄iT |, (18)

whereV̄iT is the relative distribution volume obtained by
the normalized integral of the measured input function,
V̂iT is the estimated relative distribution volume based on
the estimated integral of the input function, andN is the
total number of voxels in the brain region. For subject
2, PM = 0.012, meaning that the distribution volume

subject PM subject PM
1 0.024 6 0.018
2 0.012 7 0.031
3 0.038 8 0.261
4 0.006 9 0.041
5 0.068 10 0.018

TABLE III

THE PM METRIC THAT QUANTIFIES THE DIFFERENCE BETWEEN

THE DISTRIBUTION VOLUME PARAMETRIC IMAGE BASED ON THE

PROPOSED METHOD AND THAT BASED ON THE MEASURED INPUT

FUNCTION.

image based on the estimated integral contain 1.2% error,
compared with the distribution volume image based on
the measured input function. In Figure 3 (c) and (d), we
use slice 15 as example to show the distribution volume
parametric images based on the measure and estimated
integral of the input function. The difference image is
shown in Figure 3(e). The images shown are after 3-
by-3 neighborhood median filtering. In Figure 3 (c) and
(d), both images show the expected high binding in the
region of basal ganglia and the midbrain.

In total, we analyze 10 subjects. In Table III, we
show thePM that quantifies the difference between
the distribution volume parametric images based on the
estimated and measured integrals of the input function.
From Table III, thePM error for most of the subjects are
small, and the averagePM is 5.2%. Excluding subject
8 with extremely largePM , the average error reduces to
2.8%. To better illustrate the estimation error, in Figure
4, we show the estimated integral and the scatter plot of
estimated distribution volumes, (a) and (b) for subject 1,
whosePM is 2.4%; (c) and (d) for subject 9, whosePM
is 4.1%; (e) and (f) for subject 8, whosePM is 26.1%.
For subject 8, the proposed method gives an incorrect
estimate of the integral. The scatter plot in Figure 4 (f)
shows a linear relationship. The estimated distribution
volume image is of lower contract, compared with the
case where the input function is measured. Therefore,
the estimated distribution volume image is qualitatively
meaningful but quantitatively incorrect. For the other
nine subjects, the proposed method is able to estimate the
integral of the input function and the distribution volume
parametric image, giving an average error of 2.8.%.

VI. D ISCUSSIONS

In this paper, we presented an activity-subspace ap-
proach for estimating the integrated input function and
the relative distribution volume parametric image. Rather
than providing absolute quantification, the proposed
method only estimates the relative distribution volume
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Fig. 4. The left column is the measured and estimated integrals of the input function. The right column is the scatter plots of the estimated
distribution volume parameters. Figure (a) (b) correspond to subject 1; (c) (d) correspond to 9; (e) (f) correspond to subject 8.

within a scale factor. The scale factor is a common issue
to any blind identification methods where no assump-
tions are made on the unknown input function. When
analyzing PET data of a single subject, the relative distri-
bution volume is useful for comparisons across different
slices or ROIs. For comparisons across subjects, an im-
portant issue, absolute quantification of the distribution
volume, needs to be addressed, and therefore additional
assumptions or additional data are required. For example,
if the total amount of dosage is controlled such that the
integrals of the input functions of different subjects are
the same, the proposed method can be applied. If the

artery is included in the dynamic images, after metabolite
correction, the ratio between the input functions of two
subjects can be inferred from the intensities of the
artery voxels, and we can further use the ratio to adjust
the estimated relative distribution volumes of the two
subjects. Another possible option for achieving absolute
quantification is to take a single arterial sample during
scanning (or a venous sample if the relationship between
arterial concentration and venous concentration is well
established) to provide a reasonable estimate of the scale
factor, though more research efforts may be needed for
determining the optimal time point to take the sample.
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In the analysis of the PET DASB study in Section
V, the measured input function is considered as the
gold standard. [4] shed light on the validity of this
gold standard. In [4], it was shown that the estimated
kinetic parameters by several methods were consistent,
including the Logan plot [17] and a reference tissue
method SRTM [9]. Logan plot assumed knowing the
measured input function, while SRTM assumed a ref-
erence region. Although the two methods started from
different assumptions, the estimated kinetic parameters
were consistent, indicating that both the measured input
function and the reference region were correct. In Section
V, we observe that, in most subjects, the estimated
integral of the input function is close to the normalized
integral of the measured input function. This observation
enhanced our belief that, it is reasonable to regard the
measured input as thegold standardin this study.

A challenging question general to blind identification
methods is that how to tell whether the estimates are
correct or not, when the true parameters are unknown.
We are lack of a theoretical answer to this question.
Heuristically, it is observed from Figure 4(e) that the
estimated integral of the input function is incorrect since
the shape of the integral is clearly incorrect. For more
challenging cases where the shape of the estimated inte-
gral may look correct, though not observed in our study,
one possible solution is to examine the statistical stability
via bootstrap, similar to the reproducibility idea in [4].
We can generate bootstrapped data sets and estimate the
integral from each bootstrapped data set. If the estimated
integrals from different bootstrapped data are statistically
consistent, we can have certain confidence in the result;
if otherwise, this can be an indication of failure.

VII. C ONCLUSION

Of interest in this paper is the estimation of the
total distribution volume parametric image in PET study
when the knowledge of the plasma input function is
not available. In this paper, we have presented a novel
concept of activity-subspace, and derived the method for
estimating the integral of the input function by exploring
the intersections of the activity-subspaces spanned by
the voxel cluster TACs and their integrals. No prior
information regarding the input function or the reference
region is needed in the proposed method. We presented
the mixture Principal Component Analysis to group the
brain voxels into clusters, so that the noise is reduced
and the activity-subspace approach is able to estimate the
integral of the input function more reliably. An iterative
least square method is incorporated to further improve
the accuracy of the estimated integral of the input
function. Results from a PET brain study show that, for

the noninvasive studies when the measurement of plasma
input function or a reference region is unavailable, the
proposed activity-subspace approach, together with the
mPCA method and the iterative least square method,
is able to efficiently estimate the integral of the input
function and the distribution volume parametric images.
In a real dynamic PET data set of 10 subjects, the
proposed method achieved an average error of 5.2%
compared with the case where the true input function
is measured and known.

APPENDIX

An EM algorithm for estimating mPCA model is
proposed in [19]. The algorithm can be summarized as
follows. Given the model parameters from initialization
or previous iteration, the probability of observationyi

conditioning on thekth probabilistic PCA model param-
eters can be calculated,

p(yi|k) =
∫

p(yi|x, k)p(x|k)dx

= (2π)−d/2|Ck|−1/2e−
1
2
(yi−µk)T C−1

k (yi−µk)

(19)
whereCk = σ2

kI +WkW
T
k . Given the prior probabilities

p(k) of a set of K probabilistic PCA models, the
marginal probability of observationyi is,

p(yi) =
K∑

k=1

p(yi|k)p(k), (20)

and the posterior probability of thekth probabilistic PCA
model can be expressed as

p(k|yi) =
p(yi|i)p(k)

p(yi)
. (21)

Therefore, the posterior probability can be used for the
classification purpose.

In the M-step, the update of model parameters can
be summarized as follows. Suppose there are in totalN
voxels under consideration.

p̃(k) =
1
N

N∑

i=1

p(k|yi)

µ̃k =
∑N

i=1 p(k|yi)yi∑N
i=1 p(k|yi)

W̃k = SkWk(σ2
kI + M−1

k W T
k SkWk)−1

σ̃2
k =

1
d
tr(Sk − SkWkM

−1
k W̃ T

k )

where,p̃(k), µ̃k, W̃k, σ̃2
k are the updated model parame-

ters for thekth probabilistic PCA model in the mixture,
and

Sk =
1

p̃(k)N

N∑

i=1

p(k|yi)(yi − µ̃k)(yi − µ̃k)T

Mk = σ2
kI + W T

k Wk
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