An Activity-Subspace Approach for Estimating the Integrated Input Function and Relative Distribution Volume in PET Parametric Imaging

Peng Qiu1, Z. Jane Wang2, K. J. Ray Liu3, and Zsolt Szabo4
1Department of Radiology, Stanford University, Stanford, CA
2Department of Electrical and Computer Engineering, University of British Columbia, Canada
3Department of Electrical and Computer Engineering, University of Maryland, College Park, MD
4Department of Radiology, Johns Hopkins University Medical Institutions, MD

Abstract—Dynamic PET (positron emission tomography) imaging technique enables the measurement of neuroreceptor distributions corresponding to anatomic structures, and thus allows image-wide quantification of physiological and biochemical parameters. Accurate quantification of the concentration of neuroreceptor has been the objective of many research efforts. Compartment modeling is the most widely used approach for receptor binding studies. However, current compartment-model based methods often either require intrusive collection of accurate arterial blood measurements as the input function, or assume the existence of a reference region. To obviate the need for the input function or a reference region, in this paper, we propose to estimate the input function. We propose a novel concept of activity-subspace, and estimate the input function by the analysis of the intersection of the activity-subspaces. Then the input function and the distribution volume parameter are refined and estimated iteratively. Thus, the underlying parametric image of the total distribution volume is obtained. The proposed method is compared with a blind estimation method, Iterative Quadratic Maximum-Likelihood (IQML) via simulation, and the proposed method outperforms IQML. The proposed method is also evaluated in a brain PET data set.

I. INTRODUCTION

The fundamental aim of functional imaging such as positron emission tomography (PET), single photon emission computed tomography (SPECT) is to extract quantitative information about physiological and biochemical functions (e.g. physiological parameters) from medical images. PET is a nuclear imaging technique relying on the unique physics of radionuclides that decay via positron emission. PET in dynamic mode can produce sequential images of the in vivo distribution of a radioligand over time. PET imaging has found many clinical applications, with substantial contributions to neurologic illnesses, oncology, and cardiovascular disease [1]. For example, using PET and a specific radioligand, the serotonin transporter (SERT) in the brain can be quantified to assess the integrity of serotonergic neurotransmission [2]. Of particular interest in this paper is the image-wide quantification of the concentration of neuroreceptor.

For the purpose of neuroreceptor quantification, the PET time-activity data are commonly analyzed by fitting to a mathematical model. Compartmental model-based approaches are the most widely used for tracer kinetic modeling in dynamic imaging [3], [4]. The compartmental modeling approaches can be mainly classified into two categories, namely invasive and noninvasive, on the basis of whether arterial blood sampling is required. In the invasive approaches, a sequence of arterial plasma samples is used as the input function in the kinetic model [5], [6]. Though invasive models have some advantages, arterial plasma samples are often difficult to obtain or measure accurately, and such invasive measurement represents a limited, but not negligible risk of complications including thrombosis, infection and nerve injury [7]. Therefore, there has been increasing interest in noninvasive techniques.

Noninvasive techniques in the literature can be further classified depending on whether a reference region is needed. Examples of reference region based methods include [8] where the time activity curve (TAC) from carotid artery regions of interest (ROI) is used as the input function, and [9], [10] where a two-compartment model is assumed for the reference region. The reference region models obviate the need for input function by obtaining the parameters as a function of the reference region TAC. Another noninvasive research direction is to estimate both the kinetic parameters and the input function simultaneously. For example, in [11], [12], the input
function is assumed to follow a mathematical formula, with several parameters to be determined. The parameters for the input function and the kinetic parameters are estimated simultaneously through weighted nonlinear least square method. In [13], three blind identification schemes are examined and compared, namely the cross relations method (CR), the iterative quadratic maximum likelihood method (IQML) and the eigenvector-based algorithm (EVAM). These methods estimate kinetic parameters without requiring the knowledge of the input function. The input function can be obtained based on the observed TACs and the estimated kinetic parameters.

In this study, we revisit a novel noninvasive approach first proposed by our group [14], called the activity-subspace approach and also referred as intersectional searching algorithm (ISA) in [15]. The proposed activity-subspace approach does not assume any reference regions, and thus, falls into the category that estimates both the kinetic parameters and the input function. Compared with [11], [12], the proposed activity-subspace approach does not assume any mathematical structure of the input function. Different from the methods discussed in [13], the proposed approach first estimates the input function through the intersection of activity-subspaces. Then, with the estimated input function, the distribution volume parameters are iteratively estimated, and the estimated input function is refined at the same time. The basic idea is intuitively explained as follows. Since the TAC of each voxel is determined by the plasma input function and the dynamics of this voxel, it can be derived from the compartmental models that: for each voxel, a two-dimensional activity-subspace can be defined from its TAC; the integral of the input function belongs to the activity-subspace. It is noted that a common input function is shared by all the voxels. Therefore, theoretically, given several different voxels and their corresponding activity-subspaces, the integral of the common input function belongs to all these different activity-subspaces, and thus can be estimated by finding the intersection of the activity-subspaces. Very recently, Naganawa et al. proposed a method, called robust EPISA, for robust extraction of the cumulative integral of the input by jointly using ISA and clustering, and found successful applications in real PET analysis [15]. It was shown that the calculated neuroreceptor images by the robust EPISA have a quality equivalent to that using the measured input after metabolite correction [15]. However, despite the promise of EPISA, there are still two disadvantages remained with the current activity-subspace based approaches: one is that it is sensitive to noise; the other is that the monotonicity of the estimated integral is not guaranteed. To overcome these two problems, in this paper, we propose to use a novel clustering algorithm [16] jointly with the activity-subspace approach, which can efficiently reduce the noise in PET data. We also propose an iterative least square procedure that refines the estimated integral obtained by the activity-subspace approach, where the monotonicity of the estimated integral is enforced in the iterative procedure.

This paper is organized as follows. In Section II, we first describe the models in the voxel domain, including the two-compartment model, three-compartment model and the graphical analysis (GA) plot of [17]; we then formulate the problem. In Section III, we present the proposed activity-subspace approach to estimate the input function and the parametric image of the total distribution volume. In Section IV, data simulations are put into operation. The performance of the proposed scheme is examined using brain PET data sets in Section V, followed by Discussions and Conclusions.

II. SYSTEM MODEL AND FORMULATION

Accurate estimation of parametric images in neuroreceptor studies often requires fitting the TACs to a mathematical model. Compartment models are the most popular models used for physiologically based quantification of the neuroreceptor concentration. In the literature, the in vivo tracer kinetics are often represented by a serial compartmental model [3]. Measures such as binding potential (BP) and distribution volume (DV) are then often calculated based on the model parameters. A simple compartment model is the two-compartment model, as illustrated in Figure 1(a). The i^{th} voxel within the organ of interest is modeled by two compartments. One compartment $c_p(t)$ represents the radiotracer concentration in arterial blood at time t, and the other represents radiotracer concentration in the tissue compartment $c_i(t)$. The two-compartment model can be mathematically written as a linear differential equation:

$$
\frac{dc_i(t)}{dt} = k_{i1}c_p(t) - k_{i2}c_i(t), \tag{1}
$$

where the rate constants k_{i1} and k_{i2} represents blood-tissue exchange parameters for the i^{th} voxel. Equation (1) can be integrated and rearranged into the following form,

$$
\int_0^T c_i(t)dt = \frac{k_{i1}}{k_{i2}} \int_0^T c_p(t)dt - \frac{1}{k_{i2}}c_i(T). \tag{2}
$$

Another widely used compartment model is the three-compartment model. For instance, in serotonin transporter imaging, brain regions containing receptors have the minimal number of three compartments. The three-compartment model is illustrated in Figure 1(b). The

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
The i^{th} voxel within the organ of interest is modeled by three compartments, where $c_p(t)$ represents radiotracer concentration in arterial blood, $c_{in}(t)$ is the radioactivity in the nonspecific binding compartment, and $c_{is}(t)$ is the radioactivity in specific binding compartment. The arrows represent the direction by which radioligand can move between compartments, with model parameters $k_{i1}, k_{i2}, k_{i3}, k_{i4}$. Mathematically, Figure 1(b) can be represented by two linear differential equations:

$$\frac{dc_{is}(t)}{dt} = k_{i3}c_{in}(t) - k_{i4}c_{is}(t);$$

$$\frac{dc_{in}(t)}{dt} = k_{i1}c_p(t) - (k_{i2} + k_{i3})c_{in}(t) + k_{i4}c_{is}(t).$$

In PET imaging experiments, $c_{is}(t)$ and $c_{in}(t)$ cannot be measured separately. The observed receptor activity in the i^{th} brain voxel is the total concentration $c_i(t) = c_{is}(t) + c_{in}(t)$. Following the same derivation as in [18], the dynamics of each voxel i at time T satisfies the following equation,

$$c_i(T) = \gamma_{i1} \int_0^T \int_0^t c_p(t) dt ds + \gamma_{i2} \int_0^T \int_0^s c_i(t) dt ds + \gamma_{i3} \int_0^T c_i(t) dt + \gamma_{i4} \int_0^T c_p(t) dt,$$

where the parameters $\gamma_{i1} \sim \gamma_{i4}$ are uniquely determined by the parameters $k_{i1} \sim k_{i4}$.

In the graphical analysis (GA) plot introduced by Logan et al. [17], an asymptotically linear relationship can be observed for the three-compartment model. For voxel i,

$$\frac{\int_0^T c_i(t) dt}{c_i(T)} = \frac{\int_0^T c_p(t) dt}{c_i(T)} + b_i,$$

where the slope V_{iT} is the total distribution volume (which is expressed as $(k_{i1}/k_{i2})(1 + k_{i3}/k_{i4}))$, and b_i is the intercept which becomes constant for $T > t^*$. This linear relationship is asymptotically valid for the late part of the dynamic PET experiment. By rearranging equation (4), for $T > t^*$, we can obtain a form which is very similar to equation (2):

$$\int_0^T c_i(t) dt = V_{iT} \int_0^T c_p(t) dt + b_i c_i(T).$$

Therefore, This relationship (5) is valid both for the two-compartment model and for the three-compartment model when $T > t^*$.

In existing literature, assuming that the input function $c_p(t)$ is known, models in (2), (3) and (5) allow estimation of kinetic parameters by multilinear regression analysis of the voxel TACs [18]. However, in the problem of interest here, the knowledge of the input function $c_p(t)$ is not available. Therefore, our goal is to estimate both the input function $c_p(t)$ and the kinetic parameters.

We now describe the basic idea by first introducing the discrete version of the model in (5). In practice, the PET images are generally acquired with increasing time intervals. Let $t = \{t_1, t_{i+1}, ..., t_n\}$ denotes the sampling time points that are later than t^*. By evaluating the terms in equation (5) at time points in t, we define the following vectors, $c_i = [c_i(t_1), c_i(t_{i+1}), ..., c_i(t_n)]^T$, $c_{int} = [\int_0^{t_1} c_i(t) dt, \int_0^{t_{i+1}} c_i(t) dt, ..., \int_0^{t_n} c_i(t) dt]^T$, and $c_p = [\int_0^{t_1} c_p(t) dt, \int_0^{t_{i+1}} c_p(t) dt, ..., \int_0^{t_n} c_p(t) dt]^T$. Equation (5) can be written in a vector form,

$$c_{int} = V_{iT} c_p + b_i c_i,$$

where the super-script int represents the single integral operation. Therefore, in the voxel domain, we can observe the following relationship for each voxel,

$$c_{p}^{int} = \frac{-b_i}{V_{iT}} c_i + \frac{1}{V_{iT}} c_{i}^{int}.$$ (7)

From equation (7), it can be observed that the integral of the input function c_p^{int} can be written as the linear combination of the i^{th} voxel’s TAC and the integral of the i^{th} voxel’s TAC. For the i^{th} voxel, we define the space spanned by c_i and c_{p}^{int} as its activity-subspace, which is of dimension two. From equation (7), the integral of the input function c_p^{int} lies in the activity-subspace of the i^{th} voxel. Since a common input function is shared by all the voxels, the integral of the input function belongs to the activity-subspaces of all voxels within the organ of interest. Therefore, we can estimate c_p^{int} by finding the intersection of the different activity-subspaces. After obtaining the estimate of c_p^{int}, we can apply iterative least square method to iteratively estimate.
the kinetic parameters in equation (7) and refine the estimate of c^int_p.

III. PROPOSED SCHEME

In this section, the proposed activity-subspace approach is described in detail. In order to estimate the integral of the input function based on the noisy PET measurements, the problem of finding the intersection of different activity-subspaces is formulated as an optimization problem. To reduce the noise effect, mixture principal component analysis (mPCA) [19] is employed to group the voxel TACs into several clusters. Since each cluster contains voxels with similar TACs and kinetic parameters, the cluster average TAC will follow the model in equation (7). Through averaging, the noise effect is reduced. The activity-subspace approach will operate on the cluster average TACs, estimating the integral of the input function by finding the intersection between the activity-subspaces defined by cluster average TACs.

A. Activity-subspace intersection for estimating the integral of the input function

In equation (7), assuming that c_i and c^int_i are noise-free, we can see that the vector c^int_p lies in the subspace spanned by c_i and c^int_i, which is defined as voxel i’s activity-subspace. For any two different voxels i and j with different kinetic parameters, ideally the vector c^int_p should belong to both the activity-subspace spanned by c_i and c^int_i and the activity-subspace spanned by c_j and c^int_j. Equivalently, in the ideal noise-free situation, the intersection of the two activity-subspaces is an one-dimensional subspace (a line), which defines the direction of the vector c^int_p. This observation motivates us to estimate the vector c^int_p by exploring the intersection of the activity-subspaces.

Another observation is that, although the direction of the vector c^int_p can be determined through the intersection of activity-subspaces, we are not able to determine the length of the vector. In other words, we are able to estimate the shape of the curve $\int_0^T c^\text{int}_p(t)dt$, but the amplitude remains unknown. As far as the distribution volume parametric image is concerned, not knowing the amplitude will not cause a problem. For example, if we determine the direction of the vector c^int_p from the intersection of activity-subspaces and constraint the length of the vector to be 1, the estimated integral of input function \hat{c}^int_p will be a scaled version of the integral of the true input function, i.e. $\hat{c}^\text{int}_p = \eta c^\text{int}_p$, where η is a scalar. If we use c^int_p to estimate the kinetic parameters in equation (6) using linear regression, the parameter b_i will be estimated accurately, and the estimated total distribution volume \hat{V}_{IT} will be scaled by a factor of $\frac{1}{\eta}$, i.e. $\hat{V}_{IT} = \frac{1}{\eta}V_{IT}$. Since the estimated total distribution volume is scaled by the same factor for all voxels, the total distribution volume parametric image will not be affected. Therefore, in the proposed method, we constrain the estimated integral of the input function to be a vector of unit length, i.e., $|\hat{c}^\text{int}_p| = 1$.

In practice $c_i(t)$’s are noisy measurements, and thus the integral of $c_i(t)$ appears as a noise source too. The noisy nature of $c_i(t)$ certainly will affect the precision of the activity-subspace spanned by c_i and its integral c^int_i and thus the intersection of the activity-subspaces. As mentioned above, in the ideal noise-free case, the intersection line between $\text{span}(c_i, c^\text{int}_i)$ and $\text{span}(c_j, c^\text{int}_j)$ defines the integral of the input function c^int_p. However, because of the measurement noise, both activity-subspaces are disturbed and the intersection line may no longer exist. Therefore, we propose to approximate the intersection by the following. In the ideal noise-free case, the intersection between $\text{span}(c_i, c^\text{int}_i)$ and $\text{span}(c_j, c^\text{int}_j)$ can be equivalently regarded as a pair of lines, one in each activity-subspace, that share maximum correlation. Through a similar methodology, with the presence of measurement noise, we can find a pair of lines, such that one belongs to $\text{span}(c_i, c^\text{int}_i)$, the other belongs to $\text{span}(c_j, c^\text{int}_j)$, and this pair of lines share maximum correlation. The average of this pair of lines could be a reasonable approximation of the intersection line in the ideal case, which is the integral of the input function.

Mathematically, assume that vectors v_{i1} and v_{i2} are the ortho-normal basis of the subspace $\text{span}(c_i, c^\text{int}_i)$. Then, any unit length vector u_i in $\text{span}(c_i, c^\text{int}_i)$ can be written as,

$$u_i = \cos(\theta_i)v_{i1} + \sin(\theta_i)v_{i2}$$

where $\theta_i \in [0, 2\pi)$. Therefore, the problem of finding the approximation of the intersection line between two activity-subspaces can be formulated as the following optimization problem,

$$\max_{\theta_i, \theta_j} \quad u_i^T u_j$$

s.t. \quad \begin{align*}
 u_i &= \cos(\theta_i)v_{i1} + \sin(\theta_i)v_{i2} \\
 u_j &= \cos(\theta_j)v_{j1} + \sin(\theta_j)v_{j2} \\
 \theta_i &\in [0, 2\pi), \theta_j \in [0, 2\pi)
\end{align*}

where, v_{i1} and v_{i2} are the ortho-normal basis of the activity-subspace $\text{span}(c_i, c^\text{int}_i)$. v_{j1} and v_{j2} are the ortho-normal basis of the activity-subspace $\text{span}(c_j, c^\text{int}_j)$. This maximization problem can be solved by grid search of possible values of θ_i and θ_j over the range of $[0, 2\pi)$ (In the current implementation, the
the integral of the input function is approximated by

\[\int p(x) \, dx \approx \sum_{i,j} \mu_i^*(\theta^*_j) \]

Thus can be represented by the

\[p(x) = \sum_{i,j} \pi_i \mu_i^*(\theta^*_j) \]

by a set of prior probabilities. Therefore, a voxel

PCA model. The relative size of each cluster is modeled
different. mPCA describes each cluster by a probabilistic
model, \(\pi_i \). Assume there exist \(K \)
clusters of

to apply the mPCA approach for clustering.

underlying nonlinearity and complexity with a mixture
Principlal Component Analysis (mPCA) has been a promising
framework to deal with such problems by modeling the
underlying nonlinearity and complexity with a mixture
of local linear sub-models [16]. In our study, we propose

Clustering voxels can be regarded as identifying dif-
ferent voxel activity patterns, where each activity pattern

Clustering voxels can be regarded as identifying differ-
ent voxel activity patterns, where each activity pattern

can be represented by a different underlying model. As
demonstrated in many areas, the idea of mixture Prin-
cipal Component Analysis (mPCA) has been a promising
framework to deal with such problems by modeling the
underlying nonlinearity and complexity with a mixture
of local linear sub-models [16]. In our study, we propose
to apply the mPCA approach for clustering.

The concepts in mPCA is related with the PET para-
metric imaging problem as follows. In the mPCA
approach, a set of probabilistic PCA models is introduced
by associating a probability density with the conven-
tional PCA model. Assume there exist \(K \) clusters of
functionally different voxels, whose activity patterns are different. mPCA describes each cluster by a probabilistic
PCA model. The relative size of each cluster is modeled
by a set of prior probabilities. Therefore, a voxel \(i \), with
probability \(p(k) \) (prior) belongs to the \(k^{th} \) cluster, and
thus can be represented by the \(k^{th} \) probabilistic PCA model,

\[y_i = W_k x + \mu_k + \epsilon_k, \]

where \(y_i \) is voxel \(i \)'s TAC. \(x \) is assumed to be an
independent Gaussian vector with unit variance, \(x \sim N(0, I) \) and dimension \(q \). The columns of the matrix \(W_k \)
are the \(q \) principal components of the activity pattern in
the \(k^{th} \) cluster. The principal components are not
necessarily unitary, so that the energy of each component
can be taken care of in the \(W_k \) matrix. The parameter \(\mu_k \)
represents the mean activity pattern, and \(\epsilon_k \) represents
measurement noise. For the case of isotropic noise,
\(\epsilon_k \sim N(0, \sigma^2 I) \), the conditional probability of observing
TAC \(y_i \) can be written as follows,

\[p(y_i|x, k) = (2\pi \sigma_k^2)^{-d/2} e^{-\frac{1}{2\sigma_k^2} \| y_i - W_k x - \mu_k \|^2}. \] (11)

Integrating the above equation over the distribution of
\(x \), we obtain the distribution of observation \(y_i \) given the
\(k^{th} \) probabilistic PCA model,

\[p(y_i|k) = \int p(y_i|x, k)p(x|k)dx \]

\[= (2\pi)^{-d/2} |C_k|^{-1/2} e^{-\frac{1}{2} (y_i - \mu_k)^T C_k^{-1} (y_i - \mu_k)} \] (12)

where \(C_k = \sigma_k^2 I + W_k W_k^T \). Given the prior probabilities
\(p(k) \) of the set of \(K \) probabilistic PCA models, according
Bayes rule, the posterior probability of the \(k^{th} \) model
can be expressed as

\[p(k|y_i) = \frac{p(y_i|k)p(k)}{\sum_{k=1}^{K} p(y_i|k)p(k)}. \] (13)

The posterior probability can be used for the purpose of
clustering.

As in [19], an EM algorithm of mPCA is derived. In
the E-step, given the observed TACs and model param-
eters from previous iteration, the posterior probability of
the \(k^{th} \) model can be calculated. In the M-step, the
model parameters are updated based on the previous
model parameters and the posterior probabilities. The
detailed EM algorithm is described in Appendix. When
the algorithm converges, for each voxel, we obtain the
posterior probability of the voxel belonging to each
probabilistic PCA model conditioning on the observed
TAC. Based on the posterior probabilities, voxels are
grouped into clusters. For each cluster, the average TAC
is calculated, based on which the activity-subspace of the
cluster is defined. The integral of the input function is
estimated from the intersection of activity-subspaces of
different clusters, using the method described in section
III-A.

C. Iterative least square for refining the estimated integral

After voxel clustering, the integral of the input func-
tion is estimated from the intersection of activity-
subspaces defined by the clusters’ average TACs. We
extend the analysis to the voxel domain to further improve the accuracy of the estimated integral. Since each voxel TAC is a function of the same input function, we explore this property using the iterative least square method. For each voxel \(i \), the noisy model of (6) can be expressed as,

\[
c_i = -\frac{V_{IT}}{b_i} c_p^{int} + \frac{1}{b_i} c_i^{int} + n_i = (c_p^{int}, c_i^{int}) \left(\frac{-V_{IT}}{b_i} \right) + n_i,
\]

where the noise term \(n_i \) contains the measurement noise, the error from numerical integration, and the model mismatch error due to the asymptotically linear assumption. Define the observation matrix \(C = [c_1, ..., c_N] \), \(S = [c_p^{int}, c_1^{int}, ..., c_N^{int}] \), the coefficient matrix \(A \) with \(A(1, i) = -V_{IT}/b_i, A(i + 1, i) = 1/b_i \) and all other elements being zero, and the noise matrix \(N = [n_1, ..., n_N] \). Combining equation (14) of multiple voxels, we obtain the block formulation,

\[
C = SA + N.
\]

In order to estimate the kinetic parameters \(V_{IT}, b_i \), the least-square (LS) formulation yields the following minimization problem:

\[
\min_{c_p^{int}, \{V_{IT}, b_i\}} \| C - SA \|_F^2.
\]

Searching for the global minimizer is computationally prohibitive even for modest number of voxels under consideration. To achieve an affordable computational cost, we apply the iterative least square method. The basic idea is that, we start from the initial estimate of \(c_p^{int} \) based on the intersection of activity-subspaces of voxel clusters, as described in sections III-A and III-B. Based on the estimated integral of input function, the coefficients in \(A \) can be estimated by least square regression. Using the estimate of \(A \), which is the estimated \(\{V_{IT}, b_i\} \) for all voxels, the integral of the input function can be calculated from equation (7) for each voxel. The estimate of \(c_p^{int} \) can be updated based on the calculated integrals from all the voxels. Note that, the initial estimate is obtained by the intersection of activity-subspaces, where the monotonicity is not guaranteed. In the iterative least square procedure, the monotonicity can be easily enforced by updating \(c_p^{int} \) based on the average of the calculated integrals that are monotonically increasing. The process iterates until convergence, when the difference between estimated \(c_p^{int} \) in consecutive iterations is below a certain threshold.

The minimization problem in (16) has many local minimizers. Therefore, in order to solve for the global minimizer, a good initialization is required. In our scheme, the activity-subspace approach is employed to obtain the initial estimate of \(c_p^{int} \), which aims at finding the estimate of \(c_p^{int} \) that fits the activity-subspaces defined by several voxel clusters. We believe that such an initial estimate is naturally a good choice as it follows the underlying signal model. During the iterative least square procedure, we iteratively refine the estimate of the integral of the input function, the kinetic parameters are estimated at the same time. (Please note that, although we express the formulation in matrix form, the estimates are obtained in a voxel-by-voxel fashion.)

D. Summary of the proposed scheme

In summary the following steps are taken:

- **Initialization:** We apply the activity-subspace approach to obtain the initial estimate of the integral of the input function. More specifically
 - Preprocess time activity data and identify voxels that belong to the brain region.
 - Cluster the voxels TACs into \(M \) clusters using Mixture Principal Component Analysis. A reasonable value of \(M \) should be chosen. Based on our observations, \(M = 2 \) could be a good choice. Denote the average cluster TACs as \(x_i \), \(j = 1, ..., M \), and their single integrals as \(x_j^{int} \).
 - For each pair \((i, j) \), where \(i, j \in [1, M] \), the intersection of the activity-subspaces \(\text{span}(x_i, x_j^{int}) \) and \(\text{span}(x_j, x_j^{int}) \) is obtained by (9). The intersections are the estimates of the integral of the input function. The average of them will serve as the initial estimate of \(c_p^{int} \).

- **Iterative Refinement:** With the initial estimate of \(c_p^{int} \), the iterative least square is applied to further improve the estimation accuracy. At each iteration,
 - Given the estimated \(c_p^{int} \) from the previous iteration, for each voxel \(i \), the coefficients \(V_{IT} \) and \(b_i \) are estimated using least square regression.
 - For each voxel, given the coefficients \(\{V_{IT}, b_i\} \), the integral of the input function can be calculated from equation (7).
 - The estimate of \(c_p^{int} \) is updated by the average of the calculated integrals that are monotonically increasing. The estimate of \(c_p^{int} \) is then normalized to a unit length vector.
 - Iterate until convergence, the difference between estimated \(c_p^{int} \) in consecutive iterations is below a certain threshold.

Note that, if the data dynamic follows the two-compartment model, equation (6) holds during the entire experiment. In this case, \(t^* = 0 \) and the integral of the input function during the entire experiment can be estimated. If the data follow the three-compartment model,
equation (6) is an asymptotic relationship which holds for the later duration of the experiment. In this case, \(t^* > 0 \), and for the integral of the input function, only the time points later than \(t^* \) can be estimated. The value of \(t^* \) needs to be carefully chosen. The choice of \(t^* \) is a trade-off between bias and variance. Since the graphical analysis (GA) plot is an asymptotical relationship for the later part of the PET experiment, if we choose a larger \(t^* \), equations (6) and (7) will better fit the TACs. On the other hand, since only the time points after \(t^* \) are used to define the activity-subspaces, larger \(t^* \) will reduce the available time points and thus decrease the robustness of the estimated activity-subspaces.

IV. SIMULATION RESULTS

In the previous section, a novel idea of estimating the input function from activity-subspaces is proposed. In this section, we examine the performance of the activity-subspaces approach through simulation.

The time activities of two voxels are simulated by the three-compartment model. The kinetic parameters of the simulated voxels are \(k_{11} = 3.6247 \), \(k_{12} = 0.0659 \), \(k_{13} = 0.0306 \), \(k_{14} = 0.0372 \) and \(k_{21} = 4.0716 \), \(k_{22} = 0.0387 \), \(k_{23} = 0.0507 \), \(k_{24} = 0.0229 \), respectively. The parameters are derived from a brain PET study of healthy control subjects using C-11 labeled DASB, as described in section V. The input function used in the simulation is shown in Figure 2(a), where the circles indicate the time points when the input function is sampled. Similar with the brain PET study in section V, the activity of the simulated voxels are measured at 18 serial time points, which are different from the sampling time points of the input function. Since our vector form formulation in equation (7) evaluates the integral of the input function. Since our vector form formulation in equation (7) evaluates the integral of the input function, the kinetic parameters in equation (6) can be obtained through linear regression. We also calculate the kinetic parameters based on the noise free TACs and the normalized integral of the input function. The results are shown in Table I. In this table, we can see that, the relative ratios between the two voxels’ distribution volumes in both cases are the same. In the case where normalized integral of the input function is used, the calculated distribution parameters of the two voxels are scaled by the same factor, compared with the case where the true integral of the input function is used. Therefore, for the purpose of estimating distribution volume parametric image, the knowledge of the normalized integral of the input function will lead to the same performance with the case where the true integral of the input function is known. In the following, the normalized integral of the input function and the kinetic parameters in the bottom row of Table I will serve as the ground truth of the simulation.

In order to examine the impact of noise on the proposed activity-subspace approach, we consider a realistic noise model. As suggested in [18], the measurement error variance is proportional to the imaged radioactivity concentration and is inversely proportional to the scan duration. Therefore, we consider the noise model that noise terms are independent Gaussian with variances,

\[
\sigma^2(i, t_j) = \alpha e^{\lambda t_i} c_i(t_j) \frac{t_j - t_{j-1}}
\]

for \(j = 1, \ldots, n \), where \(\alpha \) is a constant determining the noise level; \(c_i(t_j) \) is the simulated noise-free TAC of voxel \(i \) at time \(t_j \); \(\lambda \) is the radioisotope decay constant. Here, we define the percent noise level as \(\sqrt{\frac{\sum_{j=1}^{n} \sigma^2(i, t_j)}{\sum_{j=1}^{n} c_i(t_j)^2}} \), with \(\{c_i(t_j)\} \) being the noise-free TAC for voxel \(i \). The noise levels ranging from 0% to 5% are tested in the simulation.

At each noise level, we simulate 1000 runs, generating 1000 pairs of noisy TACs of the two simulated voxels. In each run, the activity-subspace approach in section III-A is used to estimate the integral of the input function from the noisy TACs. With the estimated integral, the distribution volumes of the two simulated voxels are estimated by least square regression of equation (6). The ratio between the estimated distribution volumes is used to show the estimation performance. At each noise level,
Fig. 2. Figure (a) is the input function used in the simulation. Figure (b) is the integral of the input function, resampled at the time points that correspond to the sampling point of voxel activity. Figure (c) is the normalized integral of the input function. Figure (d) shows the TACs of the two simulated voxels.

TABLE I

<table>
<thead>
<tr>
<th></th>
<th>voxel 1</th>
<th>voxel 2</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>regression based</td>
<td>$V_{1T} = 95.0525$</td>
<td>$V_{2T} = 294.9598$</td>
<td>$V_{1T}/V_{2T} = 0.3223$</td>
</tr>
<tr>
<td>true integral of</td>
<td>$b_1 = -34.5938$</td>
<td>$b_2 = -90.2277$</td>
<td></td>
</tr>
<tr>
<td>the input function; noise free TACs and true integral of the input function</td>
<td>$V_{1T} = 72123.4$</td>
<td>$V_{2T} = 223807.7$</td>
<td>$V_{1T}/V_{2T} = 0.3223$</td>
</tr>
<tr>
<td>$b_1 = -34.5938$</td>
<td>$b_2 = -90.2277$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normalized integral of the input function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kinetic parameters of simulated voxels, calculated based on two cases: noise free TACs and true integral of the input function; noise free TACs and normalized integral of the input function.

we calculate the average and standard deviation of the ratio from the 1000 simulation runs.

For the purpose of comparison, we implemented the Iterative Quadratic Maximum-Likelihood (IQML), because IQML yields the best performance among the three blind estimation algorithms compared in [13]. There are both 2-compartment model and 3-compartment model versions of IQML [20]. Since the simulation is based on the 3-compartment model, due to the reason of no model mismatch, the 3-compartment model IQML yields more accurate result than that of the 2-compartment model one under noise-free case. However, the estimated distribution volume in 3-compartment IQML is very sensitive to noise even when very small noise is added and can be less accurate than that of the 2-compartment IQML. We think the intuitive reason is as follows. The 3-compartment model IQML does not directly estimate the distribution volume and it estimates a set of 4 parameters instead; the distribution volume is calculated via a complicated function of the estimated parameters and thus its estimation error can be severely amplified. Moreover, we believe that the comparison with the 2-compartment model IQML is more fair, because it has essentially the same complexity as the Logan plot in terms of the number of model parameters. Therefore, we choose to compare the proposed method with the 2-compartment model version of IQML. To ensure that IQML achieves its best performance, we use the true kinetic parameters as its initial. The results are shown in Table II.

In Table II, at the 0% noise level, although the integral of the input function is estimated based on the noise-free TACs, the estimation is not perfect. This is because of two reasons. First, the activity-subspace approach is based on the Logan plot, which is an asymptotically linear relationship for the later part of the TACs. Since
the noise-free data is simulated based on the three-compartment model, there is model mismatch between the true three-compartment model and the Logan plot. Second, the activity-subspace of a voxel is spanned by the voxel TAC and its integral. With the 18 available time points of the voxel TAC, the numerical integration of the voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error. For the same reason, IQML method also gives non-zero error at voxel TAC introduces error.
Fig. 3. Results from subject 2. Figure (a) shows the normalized integral of the measured input function, the estimated integral of the input function based on activity-subspaces, and the refined results by further applying iterative least square. Figure (b) is the scatter plot of the estimated distribution volumes based on the measured and estimated integrals. Figure (c) shows the distribution volume parametric image of slice 15 based on the measured integral. Figure (d) shows the distribution volume parametric image based on the estimated integral. Figure (e) is the difference between Figures (c) and (d). The images shown are after 3-by-3 neighborhood median filtering.
and the distribution volume parametric image.

After preprocessing, the brain region is identified. In section IV, it is shown that the proposed activity-subspace approach is sensitive to noise. Therefore, we cannot directly apply the activity-subspace approach based on the noisy voxel TACs. To reduce the noise, we take voxels from the brain regions of all slices, and apply the mPCA approach in section III-B to group the brain voxel TACs into two clusters. The activity of each cluster is represented by the average of voxel TACs within this cluster. Through averaging, the noise is reduced. Then, the integral of the input function is estimated using the activity-subspace approach, which operates on the cluster average TACs. In Figure 3(a), we use the data for subject 2 as an example. The estimated integral of the input function is shown by a solid line labeled with stars. The normalized integral of the measured input function is shown by the solid line labeled with circles. To improve the accuracy of the estimated integral of the input function, the iterative least square method in section III-C is applied to iteratively refine the estimated integral of the input function based on the TACs of all brain voxels. In Figure 3(a), the refined estimate of the integral is shown by the solid line labeled with triangles.

After obtaining the estimated integral of the input function, we further estimate the relative distribution volumes. Based on the estimated integral of the input function, the relative distribution volume parameters are obtained by linear regression of equation (7) for each voxel [18]. For comparison, the relative distribution volume parameters are also calculated based on the normalized integral of the measured input function. In Figure 3(b), the scatter plot of the relative distribution volume parameters is shown, where each dot corresponds to one voxel, the horizontal and vertical axes represent the estimated parameters with the measured and estimated integral of the input function. The scatter plot closely follows the 45 degree line, which indicates high estimation accuracy. To quantify the estimation accuracy, we compute the normalized relative distance (PM) between the true and estimated parametric images. PM is defined to compare the two parametric images,

\[PM = \frac{1}{N} \sum_{i=1}^{N} \frac{|(\hat{V}_{IT} - \bar{V}_{IT})/\bar{V}_{IT}|}{}, \]

where \(\hat{V}_{IT} \) is the relative distribution volume obtained by the normalized integral of the measured input function, \(\bar{V}_{IT} \) is the estimated relative distribution volume based on the estimated integral of the input function, and \(N \) is the total number of voxels in the brain region. For subject 2, \(PM = 0.012 \), meaning that the distribution volume image based on the estimated integral contain 1.2% error, compared with the distribution volume image based on the measured input function. In Figure 3 (c) and (d), we use slice 15 as example to show the distribution volume parametric images based on the measure and estimated integral of the input function. The difference image is shown in Figure 3(e). The images shown are after 3-by-3 neighborhood median filtering. In Figure 3 (c) and (d), both images show the expected high binding in the region of basal ganglia and the midbrain.

In total, we analyze 10 subjects. In Table III, we show the PM that quantifies the difference between the distribution volume parametric images based on the estimated and measured integrals of the input function. From Table III, the PM error for most of the subjects are small, and the average PM is 5.2%. Excluding subject 8 with extremely large PM, the average error reduces to 2.8%. To better illustrate the estimation error, in Figure 4, we show the estimated integral and the scatter plot of estimated distribution volumes, (a) and (b) for subject 1, whose PM is 2.4%; (c) and (d) for subject 9, whose PM is 4.1%; (e) and (f) for subject 8, whose PM is 26.1%. For subject 8, the proposed method gives an incorrect estimate of the integral. The scatter plot in Figure 4 (f) shows a linear relationship. The estimated distribution volume image is of lower contract, compared with the case where the input function is measured. Therefore, the estimated distribution volume image is qualitatively meaningful but quantitatively incorrect. For the other nine subjects, the proposed method is able to estimate the integral of the input function and the distribution volume parametric image, giving an average error of 2.8%.

VI. Discussions

In this paper, we presented an activity-subspace approach for estimating the integrated input function and the relative distribution volume parametric image. Rather than providing absolute quantification, the proposed method only estimates the relative distribution volume.

<table>
<thead>
<tr>
<th>Subject</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.024</td>
</tr>
<tr>
<td>2</td>
<td>0.012</td>
</tr>
<tr>
<td>3</td>
<td>0.038</td>
</tr>
<tr>
<td>4</td>
<td>0.006</td>
</tr>
<tr>
<td>5</td>
<td>0.068</td>
</tr>
<tr>
<td>6</td>
<td>0.018</td>
</tr>
<tr>
<td>7</td>
<td>0.031</td>
</tr>
<tr>
<td>8</td>
<td>0.261</td>
</tr>
<tr>
<td>9</td>
<td>0.041</td>
</tr>
<tr>
<td>10</td>
<td>0.018</td>
</tr>
</tbody>
</table>

TABLE III

The PM metric that quantifies the difference between the distribution volume parametric image based on the proposed method and that based on the measured input function.
Fig. 4. The left column is the measured and estimated integrals of the input function. The right column is the scatter plots of the estimated distribution volume parameters. Figure (a) (b) correspond to subject 1; (c) (d) correspond to 9; (e) (f) correspond to subject 8.

within a scale factor. The scale factor is a common issue to any blind identification methods where no assumptions are made on the unknown input function. When analyzing PET data of a single subject, the relative distribution volume is useful for comparisons across different slices or ROIs. For comparisons across subjects, an important issue, absolute quantification of the distribution volume, needs to be addressed, and therefore additional assumptions or additional data are required. For example, if the total amount of dosage is controlled such that the integrals of the input functions of different subjects are the same, the proposed method can be applied. If the artery is included in the dynamic images, after metabolite correction, the ratio between the input functions of two subjects can be inferred from the intensities of the artery voxels, and we can further use the ratio to adjust the estimated relative distribution volumes of the two subjects. Another possible option for achieving absolute quantification is to take a single arterial sample during scanning (or a venous sample if the relationship between arterial concentration and venous concentration is well established) to provide a reasonable estimate of the scale factor, though more research efforts may be needed for determining the optimal time point to take the sample.
In the analysis of the PET DASB study in Section V, the measured input function is considered as the gold standard. [4] shed light on the validity of this gold standard. In [4], it was shown that the estimated kinetic parameters by several methods were consistent, including the Logan plot [17] and a reference tissue method SRTM [9]. Logan plot assumed knowing the measured input function, while SRTM assumed a reference region. Although the two methods started from different assumptions, the estimated kinetic parameters were consistent, indicating that both the measured input function and the reference region were correct. In Section V, we observe that, in most subjects, the estimated integral of the input function is close to the normalized integral of the measured input function. This observation enhanced our belief that it is reasonable to regard the measured input as the gold standard in this study.

A challenging question general to blind identification methods is that how to tell whether the estimates are correct or not, when the true parameters are unknown. We are lack of a theoretical answer to this question. Heuristically, it is observed from Figure 4(e) that the shape of the estimated integral may look correct, though not observed in our study, challenging cases where the shape of the estimated integral is clearly incorrect. For more challenging cases where the shape of the estimated integral may look correct, though not observed in our study, one possible solution is to examine the statistical stability via bootstrap, similar to the reproducibility idea in [4]. We can generate bootstrapped data sets and estimate the integral from each bootstrapped data set. If the estimated integrals from different bootstrapped data are statistically consistent, we can have certain confidence in the result; if otherwise, this can be an indication of failure.

VII. CONCLUSION

Of interest in this paper is the estimation of the total distribution volume parametric image in PET study when the knowledge of the plasma input function is not available. In this paper, we have presented a novel concept of activity-subspace, and derived the method for estimating the integral of the input function by exploring the intersections of the activity-subspaces spanned by the voxel cluster TACs and their integrals. No prior information regarding the input function or the reference region is needed in the proposed method. We presented the mixture Principal Component Analysis to group the brain voxels into clusters, so that the noise is reduced and the activity-subspace approach is able to estimate the integral of the input function more reliably. An iterative least square method is incorporated to further improve the accuracy of the estimated integral of the input function. Results from a PET brain study show that, for the noninvasive studies when the measurement of plasma input function or a reference region is unavailable, the proposed activity-subspace approach, together with the mPCA method and the iterative least square method, is able to efficiently estimate the integral of the input function and the distribution volume parametric images. In a real dynamic PET data set of 10 subjects, the proposed method achieved an average error of 5.2% compared with the case where the true input function is measured and known.

APPENDIX

An EM algorithm for estimating mPCA model is proposed in [19]. The algorithm can be summarized as follows. Given the model parameters from initialization or previous iteration, the probability of observation \(y_i \) conditioning on the \(k^{th} \) probabilistic PCA model parameters can be calculated,

\[
p(y_i | k) = \int p(y_i | x) p(x | k) dx = (2\pi)^{-d/2} C_k^{-1/2} e^{-1/2(y_i - \mu_k)^T C_k^{-1}(y_i - \mu_k)}
\]

where \(C_k = \sigma_k^2 I + W_k W_k^T \). Given the prior probabilities \(p(k) \) of a set of \(K \) probabilistic PCA models, the marginal probability of observation \(y_i \) is,

\[
p(y_i) = \sum_{k=1}^{K} p(y_i | k) p(k),
\]

and the posterior probability of the \(k^{th} \) probabilistic PCA model can be expressed as

\[
p(k | y_i) = \frac{p(y_i | k) p(k)}{p(y_i)}.
\]

Therefore, the posterior probability can be used for the classification purpose.

In the M-step, the update of model parameters can be summarized as follows. Suppose there are in total \(N \) voxels under consideration.

\[
\bar{p}(k) = \frac{1}{N} \sum_{i=1}^{N} p(k | y_i)
\]

\[
\bar{\mu}_k = \frac{\sum_{i=1}^{N} p(k | y_i) y_i}{\sum_{i=1}^{N} p(k | y_i)}
\]

\[
\bar{W}_k = S_k W_k (\sigma_k^2 I + M_k^{-1} W_k^T S_k W_k)^{-1}
\]

\[
\bar{\sigma}_k^2 = \frac{1}{d} \text{tr}(S_k - S_k W_k M_k^{-1} W_k^T)
\]

where, \(\bar{p}(k), \bar{\mu}_k, \bar{W}_k, \bar{\sigma}_k^2 \) are the updated model parameters for the \(k^{th} \) probabilistic PCA model in the mixture, and

\[
S_k = \frac{1}{\bar{p}(k) N} \sum_{i=1}^{N} p(k | y_i) (y_i - \bar{\mu}_k)(y_i - \bar{\mu}_k)^T
\]

\[
M_k = \sigma_k^2 I + W_k^T W_k
\]
REFERENCES

