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Abstract—Dynamic PET (positron emission tomogra- to neurologic illnesses, oncology, and cardiovascular
phy) imaging technique enables the measurement of neu-disease [1]. For example, using PET and a specific
roreceptor distributions corresponding to anatomic struc- radioligand, the serotonin transporter (SERT) in the brain
tures, and thus allows image-wide quantification of phys- ¢4 pe quantified to assess the integrity of serotonergic

lological and biochemical parameters. Accurate quantifi- o, . ansmission [2]. Of particular interest in this paper
cation of the concentration of neuroreceptor has been the .

objective of many research efforts. Compartment modeling Is the image-wide quantification of the concentration of

is the most widely used approach for receptor binding Neuroreceptor.
studies. However, current compartment-model based meth- ~ For the purpose of neuroreceptor quantification, the
ods often either require intrusive collection of accurate PET time-activity data are commonly analyzed by fitting
arterial blood measurements as the input function, or to a mathematical model. Compartmental model-based
assume the existence of a reference region. To obviateapproaches are the most widely used for tracer kinetic
thg need for the input functiqn ora ref_erence region, in modeling in dynamic imaging [3], [4]. The compartmen-
this paper, we propose to estimate the input function. We 5 mqdeling approaches can be mainly classified into
propose a novel concept of activity-subspace, and estimate, categories, namelywasiveand noninvasiveon the
the input function by the analysis of the intersection of . . o .
the activity-subspaces. Then the input function and the baS|§ of Whether arterial blood sampling is reqUIred. In
distribution volume parameter are refined and estimated the invasive approaches, a sequence of arterial plasma
iteratively. Thus, the underlying parametric image of the Samples is used as the input function in the kinetic
total distribution volume is obtained. The proposed method model [5], [6]. Though invasive models have some
is compared with a blind estimation method, lterative advantages, arterial plasma samples are often difficult
Quadratic Maximum-Likelihood (IQML) via simulation,  to obtain or measure accurately, and such invasive mea-
and the proposed method out performs IQML. The pro-  gyrement represents a limited, but not negligible risk of
posed method is also evaluated in a brain PET data set. ooy jications including thrombosis, infection and nerve
injury [7]. Therefore, there has been increasing interest
in noninvasive techniques.
|. INTRODUCTION Noninvasive techniques in the literature can be further
The fundamental aim of functional imaging suclelassified depending on whether a reference region is
as positron emission tomography (PET), single photoreeded. Examples of reference region based methods
emission computed tomography (SPECT) is to extraciclude [8] where the time activity curve (TAC) from
guantitative information about physiological and bioearotid artery regions of interest (ROI) is used as the
chemical functions (e.g. physiological parameters) fromput function, and [9], [10] where a two-compartment
medical images. PET is a nuclear imaging technigmeodel is assumed for the reference region. The reference
relying on the unique physics of radionuclides thatgion models obviate the need for input function by
decay via positron emission. PET in dynamic modabtaining the parameters as a function of the reference
can produce sequential images iof vivo distribution region TAC. Another noninvasive research direction is to
of a radioligand over time. PET imaging has foundstimate both the kinetic parameters and the input func-
many clinical applications, with substantial contributionon simultaneously. For example, in [11], [12], the input
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function is assumed to follow a mathematical formulaaper, we propose to use a novel clustering algorithm
with several parameters to be determined. The parafh6] jointly with the activity-subspace approach, which
eters for the input function and the kinetic parametecain efficiently reduce the noise in PET data. We also
are estimated simultaneously through weighted nonlingaopose an iterative least square procedure that refines
least square method. In [13], three blind identificatiothhe estimated integral obtained by the activity-subspace
schemes are examined and compared, namely the craggroach, where the monotonicity of the estimated inte-
relations method (CR), the iterative quadratic maximugral is enforced in the iterative procedure.
likelihood method (IQML) and the eigenvector-based This paper is organized as follows. In Section I,
algorithm (EVAM). These methods estimate kinetic pawe first describe the models in the voxel domain, in-
rameters without requiring the knowledge of the inputiuding the two-compartment model, three-compartment
function. The input function can be obtained based anodel and the graphical analysis (GA) plot of [17]; we
the observed TACs and the estimated kinetic parametdtgen formulate the problem. In Section Ill, we present

In this study, we revisit a novel noninvasive approadhe proposed activity-subspace approach to estimate the
first proposed by our group [14], called the activityinput function and the parametric image of the total
subspace approach and also referred as intersectiahsalribution volume. In Section 1V, data simulations are
searching algorithm (ISA) in [15]. The proposed activityput into operation. The performance of the proposed
subspace approach does not assume any referencescheme is examined using brain PET data sets in Section
gions, and thus, falls into the category that estimates bathfollowed by Discussions and Conclusions.
the kinetic parameters and the input function. Compared
with [11], [12], the proposed activity-subspace approach  |l. SYSTEM MODEL AND FORMULATION
does not assume any mathematical structure of the inpup\ccurate estimation of parametric images in neu-
function. Different from the methods discussed in [13}oreceptor studies often requires fitting the TACs to
the proposed approach first estimates the input functignmathematical model. Compartment models are the
through the intersection of activity-subspaces. Then, withost popular models used for physiologically based
the estimated input function, the distribution volumguantification of the neuroreceptor concentration. In the
parameters are iteratively estimated, and the estimafiggrature, thein vivo tracer kinetics are often repre-
input function is refined at the same time. The basiented by a serial compartmental model [3]. Measures
idea is intuitively explained as follows. Since the TAGuch as binding potential (BP) and distribution volume
of each voxel is determined by the plasma input functigmVv) are then often calculated based on the model
and the dynamics of this voxel, it can be derived froparameters. A simple compartment model is the two-
the compartmental models that: for each voxel, a twgompartment model, as illustrated in Figure 1(a). The
dimensional activity-subspace can be defined from if$ voxel within the organ of interest is modeled by
TAC,; the integral of the input function belongs to theéwo compartments. One compartmenf(t) represents
activity-subspace. It is noted that a common input fungne radiotracer concentration in arterial blood at titne
tion is shared by all the voxels. Therefore, theoreticallgnd the other represents radiotracer concentration in the
given several different voxels and their correspondingsue compartment;(t). The two-compartment model
activity-subspaces, the integral of the common inpgan be mathematically written as a linear differential
function belongs to all these different activity-subspacesguation:
and thus can be estimated by finding the intersection dei(t)

. . 1 J—

of the activity-subspaces. Very recently, Naganawa et al o - kicp(t) — kigei(t), (1)
proposed a method, called robust EPISA, for robust ex i ¢ i di ts blood-
traction of the cumulative integral of the input by jointlyW ere the rate constants, and k;, represents bloo

using ISA and clustering, and found successful applig?lﬁsue exchange parameters for e voxel. Equation

tions in real PET analysis [15]. It was shown that the c 1) can be integrated and rearranged into the following
culated neuroreceptor images by the robust EPISA have . .
a quality equivalent to that using the measured input after / ci(t)dt = ki f e (£)dt — ici(T). 2)
metabolite correction [15]. However, despite the promise 0 b

i2 Jo ko

of EPISA, there are still two disadvantages remained Another widely used compartment model is the three-
with the current activity-subspace based approaches: @oempartment model. For instance, in serotonin trans-
is that it is shown to be sensitive to noise; the other porter imaging, brain regions containing receptors have
that the monotonicity of the estimated integral is ndhe minimal number of three compartments. The three-
guaranteed. To overcome these two problems, in tliempartment model is illustrated in Figure 1(b). The
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Fig. 1. Two-compartment model and three compartment model for ioxethe region of interest.

ith voxel within the organ of interest is modeled byrherefore, This relationship (5) is valid both for the
three compartments, wherg(t) represents radiotracertwo-compartment model and for the three-compartment
concentration in arterial blood,,, (¢) is the radioactivity model whenT" > ¢*.

in the nonspecific binding compartment, and(¢) is In existing literature, assuming that the input function
the radioactivity in specific binding compartment. The,(¢) is known, models in (2), (3) and (5) allow esti-
arrows represent the direction by which radioligand canation of kinetic parameters by multilinear regression
move between compartments, with model parametensalysis of the voxel TACs [18]. However, in the problem
ki1, ki, ki3, kis. Mathematically, Figure 1(b) can be repof interest here, the knowledge of the input functigfy)

resented by two linear differential equations: is not available. Therefore, our goal is to estimate both
dess (1) the input functionc,(¢) and the kinetic parameters.
g = Fscn(t) = kucis(1); We now describe the basic idea by first introducing
. the discrete version of the model in (5). In practice, the
dein (7) . . S . .
o = Fue(t) — (ki + kig)ein(t) + kuacis(t).  PET images are generally acquired with increasing time

intervals. Lett = {¢;,t;41,...,t,} denotes the sampling

time points that are later thatf. By evaluating the
be measured separately. The observed receptor aCt'YétP'ms in equation (5) at time points ity we define

in the i** brain voxel is the total concentratian(t) = .
. o : the following vectorsec; = [ci(t;), ci(tis1), ..., ci(tn)] 7,
¢is(t) + cin(t). Following the same derivation as in [18]’Cint _ U}fl ei(t)dt, fotl“ cs(t)dt -,f(f” e()dt)T, and

the dynamics of each voxel at time 7' satisfies the cint — [ cp(t)dt,f(f”l (D)t -, [ (1) dt]T . Equa-

In PET imaging experiments;(t) and ¢;,(t) can not

’ ) .
following equation, tion (5) can be written in a vector form,
T rs T rs
a(T) = fyﬂ/o /0 cp(t)dtds + 71-2/0 /0 ci(t)dtds cint = WTC;M + bic;, (6)
T T
+%3/ ci(t)dt + %.4/ cp(t)dt, (3) Wwhere the super-scriptit represents the single integral
0 0 operation. Therefore, in the voxel domain, we can ob-

where the parameterg; ~ ;4 are uniquely determinedserve the following relationship for each voxel,
by the parameters;; ~ k.

In the graphical analysis (GA) plot introduced by c;”t = _bici+ L cint, (7)
Logan et al. [17], an asymptotically linear relationship Vi Vi
can be observed for the three-compartment model. Faom equation (7), it can be observed that the integral

voxel i, of the input functioncj,”t can be written as the linear
T T combination of the** voxel's TAC and the integral of

c;(t)dt cp(t)dt -
foc.((T; = inOC.f;)) + bi, (4) the i*" voxel's TAC. For thei!" voxel, we define the

. o space spanned by; and ¢ as its activity-subspace,
where the slopeV;r is the total distribution volume \yhich is of dimension two. From equation (7), the
(which is expressed askii /kio)(1 + kiz/kia)), and i integral of the input functionc)™ lies in the activity-
is the intercept which becomes constant for> #*. g pspace of thé" voxel. Since a common input function
This linear relationshi_p is asymptptically valid for th_qs shared by all the voxels, the integral of the input
late part of the dynamic PET experiment. By rearrangifgnction belongs to the activity-subspaces of all voxels
equation (4), forl" > t*, we can obtain a form which is yithin the organ of interest. Therefore, we can estimate
very similar to equation (2): ci"* by finding the intersection of the different activity-
T T subspaces. After obtaining the estimatec;jit, we can
/0 ci(t)dt = Vir /0 cp(t)dt + bici(T). (5) apply iterative least square method to iteratively estimate
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the kinetic parameters in equation (7) and refine tlstimated total distribution volum&;; will be scaled

estimate ofci". by a factor ofi, i.e. V;p = 1Vp. Since the estimated
total distribution volume is scaled by the same factor for
[1l. PROPOSEDSCHEME all voxels, the total distribution volume parametric image

a}g_ill not be affected. Therefore, in the proposed method,

In this section, the proposed activity-subspace i th . qi | of the i ¢ .
proach is described in detail. In order to estimate tife constrain the estimate mtegfiﬁf:t f nput function

integral of the input function based on the noisy PE'P P€ & vector of unit length, i.el¢;
measurements, the problem of finding the intersection!n Practiceci(t)’'s are noisy measurements, and thus
of different activity-subspaces is formulated as an of?€ integral ofc;(t) appears as a noise source too. The
timization problem. To reduce the noise effect, mixturd®!sy nature of;(t) certainly will affect Fhe_premsmntof
principal component analysis (MPCA) [19] is employel® activity-subspace spanned éyand its integrak;”

to group the voxel TACs into several clusters. Since eaffd thus the intersection of the activity-subspaces. As
cluster contains voxels with similar TACs and kinetic pdl€ntioned above, in the |deallntO|se-free case, thf Inter-
rameters, the cluster average TAC will follow the mod&ECtion line betweenpan(c;, i) and span(c;, i)

in equation (7). Through averaging, the noise effect §€fines the integral of the input functioe}™. How-
reduced. The activity-subspace approach will operate §¥E": Pecause of the measurement noise, both activity-
the cluster average TACs, estimating the integral of tf&PSpaces are disturbed and the intersection line may
input function by finding the intersection between thBO longer exist. Therefore, we propose to approximate

activity-subspaces defined by cluster average TACs. the intersection by the following. In the ideal noise-
free case, the intersection betweepun(c;,ci**) and

(3
. _ _ . _Span(Cj,Cént> can be equivalently regarded as a pair of

A. Activity-subspace intersection for estimating the iffhag one’in ‘each activity-subspace, that share maximum
tegral of the input function correlation. Through a similar methodology, with the

In equation (7), assuming that and c!™ are noise- presence of measurement noise, we can find a pair of
free, we can see that the vectq,?“ lies in the subspace lines, such that one belongs tpan(c;, ci™), the other
spanned byc; and ¢/, which is defined as voxefs belongs tospan(c;, ci™), and this pair of lines share
activity-subspace. For any two different voxelsand maximum correlation. The average of this pair of lines
J with different kinetic parameters, ideally the vectogould be a reasonable approximation of the intersection
¢, should belong to both the activity-subspace spannigk in the ideal case, which is the integral of the input
by ¢; and ¢/ and the activity-subspace spanneddyy function.
and cj-"t. Equivalently, in the ideal noise-free situation, Mathematically, assume that vectorg andv;, are
the intersection of the two activity-subspaces is an ongre ortho-normal basis of the subspagen(c;,ci™).
dimensional subspace (a line), which defines the direthen, any unit length vectax; in span(c;, ci™*) can be
tion of the vectorcj,"t. This observation motivates us towritten as,
estimate the vecto:r;',”t by exploring the intersection of

the activity-subspaces. w; = cos(0;)vi + sin(0;)viz (8)

Another observation is that, although the direction %here@- e [0,27). Therefore, the problem of finding
int . . (2 bl . 1
the vectore;™ can be determined through the interse¢qe 4nnroximation of the intersection line between two

tion of activity-subspaces, we are not able to determingy; i subspaces can be formulated as the following
the length of the vector. In other words, we are ab timization problem

to estimate the shape of the cury§ cp(t)dt, but the
amplitude remains unknown. As far as the distribution max u;fpuj
volume parametric image is concerned, not knowing v

the amplitude will not cause a problem. For example,
if we determine the direction of the vect«zg;”t from

the intersection of activity-subspaces and constraint the
length of the vector to be 1, the estimated integralhere, v;; and v, are the ortho-normal basis
of input function ¢’* will be a scaled version of theof the activity-subspacespan(c;,ci™), v;1 and v;s
integral of the true input function, i.ef:;;"t = ncj,"t, are the ortho-normal basis of the activity-subspace
where n is a scalar. If we use&;;"t to estimate the Span(Cj,Cént). This maximization problem can be
kinetic parameters in equation (6) using linear regressi@alved by grid search of possible valueglpndd,; over

the parameteb; will be estimated accurately, and thehe range ofl0, 27) (In the current implementation, the

u; = cos(6;)vi + sin(0;)vio (9)
s.t.< u; = cos(b;)v;1 + sin(0;)v 2
0; € [0,27T),9j S [0,271’)
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grid search interval is 0.001, meaning that we examiméhere y; is voxel i’'s TAC. x is assumed to be an

g; and 6; that take any values which are multiples oindependent Gaussian vector with unit varianges
0.001). Assumeg); = 07 and 0; = ¢; maximizes the N(0, ) and dimensiony. The columns of the matrik
objective, the corresponding;(0;) andu;(0;) are the are theg principal components of the activity pattern
pair of lines, from activity-subspaces of voxeband j, in the k" cluster. The principal components are not
that maximize the correlation. Note thatf;(6;) and necessarily unitary, so that the energy of each component
u;(07) is the solution to the maximization problem ircan be taken care of in tHé&), matrix. The parametery

(9), so does—u;(¢;) and —u;(¢7). We choose one of represents the mean activity pattern, anpdrepresents
the two solutions based on the fact that the elementsroéasurement noise. For the case of isotropic noise,
c;',"t are all positive. If the number of positive elements ig, ~ N(0,021), the conditional probability of observing
greater than the number of negative elements in vect@aC y; can be written as follows,

u;(07) andu;(07), the integral of the input function is )
approximated by = 1 (u;(6;) + u;(;)). Otherwise, pyilz, k) = (2moy) (11)
the integral of the input function is approximated byntegrating the above equation over the distribution of
éfont = %(*ui(ef) —u;(67)). x, we obtain the distribution of observatign given the
k" probabilistic PCA model,

1 2
_ — sz lyi—Wiz—p
a2, ol

B. The clustering of voxels

To yield a fine approximation of the integral of the P(ilk) = fp(yi‘w’k)p(x’k)dgcl s
input function, it is desirable to reduce the noise level in = (2m) 42| Cy |71/ 2em 2 Wik TOL i)
the voxel TACs, which are used to define the activity- 5 T . (12)
subspaces. To achieve this purpose, we cluster the voX¥iereCr = ol + W Wy . Given the prior probabilities

into several clusters according to their TACs. This idgy #) of the set ofi” probabilistic PCA 'models,@according
is similar with working on the virtual regional TACs!© Bayes rule, the posterior probability of the" model

(e.g. each cluster represents a virtual regional TAE2N be expressed as
which is not necessarily a spatially contiguous brain
region). After clustering, each cluster is represented by SSK plylk)p(k)

the average TA(.:’ based on which the clugters aCt'V'.t¥'he posterior probability can be used for the purpose of
subspace is defined. The integral of the input function

. : . . Clustering.
can be estlmatgd from the intersection of the activity- As in [19], an EM algorithm of mPCA is derived. In
subspaces of different clusters.

Clustering voxels can be regarded as identifying di!fhe E-step, given the observed TACs and model param-

ferent voxel activity patterns, where each activity pattere ters from previous iteration, the posterior probability
can be represented by a different underlying model. As

I} the £ model can be calculated. In the M-step, the
demonstrated in many areas, the idea of mixture Printr:Ti]-Od(_:‘I parameters are updated b"?‘sed on th?. previous
model parameters and the posterior probabilities. The

pal Component Anal_y3|s (MPCA) has been a PromisiBiled Em algorithm is described in Appendix. When
framework to deal with such problems by modeling th% . :
the algorithm converges, for each voxel, we obtain the

underlying nonlinearity and complexity with a mixture ; o :
. osterior probability of the voxel belonging to each
of local linear sub-models [16]. In our study, we propose o o
. probabilistic PCA model conditioning on the observed
to apply the mPCA approach for clustering. : -
) : . TAC. Based on the posterior probabilities, voxels are
The concepts in mPCA is related with the PET para- .
. ) grouped into clusters. For each cluster, the average TAC
metric imaging problem as follows. In the mPCA ap: : -
e L i calculated, based on which the activity-subspace of the
proach, a set of probabilistic PCA models is introduce . . . ; S
- . . : cluster is defined. The integral of the input function is
by associating a probability density with the conven- _® : . o
: . estimated from the intersection of activity-subspaces of
tional PCA model. Assume there exi#f clusters of : . . .
. . . different clusters, using the method described in section
functionally different voxels, whose activity patterns ar

different. mMPCA describes each cluster by a probabilistic "

PCA model. The relative size of each cluster is modeled

by a set of prior probabilities. Therefore, a voxetwith C. lterative least square for refining the estimated inte-

probability p(k) (prior) belongs to the:t" cluster, and 9ral

thus can be represented by th& probabilistic PCA  After voxel clustering, the integral of the input func-

model, tion is estimated from the intersection of activity-
yi = Wra + pp + €k, (10) subspaces defined by the clusters’ average TACs. We

p(klys) = p(yilk)p(k) (13)
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extend the analysis to the voxel domain to furthenitial estimate ofc;”t, which aims at finding the estimate
improve the accuracy of the estimated integral. Sincé c;"t that fits the activity-subspaces defined by several
each voxel TAC is a function of the same input functiorvoxel clusters. We believe that such an initial estimate
we explore this property using the iterative least squaenaturally a good choice as it follows the underlying
method. For each voxé| the noisy model of (6) can besignal model. During the iterative least square procedure,
expressed as, we iteratively refine the estimate of the integral of the
Vip a1 . —Vir input funct_ion, the kinetic parameters are estimated at
Ci= 7% +gci +n; = (c,", ¢;™") < >+n¢, the same time. (Please note that, although we express the
‘ ‘ (14) formulation in matrix form, the estimates are obtained in
where the noise term; contains the measurement noisét Voxel-by-voxel fashion.)
the error from numerical integration, and the model
mismatch error due to the asymptotically linear assumP- Summary of the proposed scheme

b;
1
b;

tion. Define the observation matri€C = [ci,...,cn],  In summary the following steps are taken:

S = [c}",c[",...,cy"], the coefficient matrixA with | |nitialization: We apply the activity-subspace ap-
A(1,4) = =Vir/bi, A(i+1,1) = 1/b; and all other ele- proach to obtain the initial estimate of the integral
ments being zero, and the noise malNx= [n;, ..., ny|. of the input function. More specifically

Combining equation (14) of multiple voxels, we obtain

— Preprocess time activity data and identify vox-
the block formulation, P y fy

els that belong to the brain region.

C=SA +N. (15) — Cluster the voxels TACs intd/ clusters using
_ o Mixture Principal Component Analysis. A rea-
In order to estimate the kinetic parametéfg, b;, the sonable value of\/ should be chosen. Based
least-square (LS) formulation yields the following min- on our observations)/ = 2 could be a good
imization problem: choice. Denote the average cluster TACxas
o o . o
min  ||C - SAH%. (16) j=1,..,M, a_nd. thelr single !n‘FegraIs as™.
cint {Vir,bi} — For each pair(i,5), where i,5 € [1,M],

the intersection of the activity-subspaces

span(x;, ;™) and span(x;,x7") is obtained

by (9). The intersections are the estimates of

Searching for the global minimizer is computationally
prohibitive even for modest number of voxels under
consideration. To achieve an affordable computational , : ,
cost, we apply the iterative least square method. The the integral of the input function. The average
basic idea is that, we start from the initial estimate of of them will serve as the initial estimate cf*".
c;’)nt based on the intersection of activity-subspaces of® Iterative Refinement: With the initial estimate of

voxel clusters, as described in sections Ill-A and IlIl- ¢, the iterative least square is applied to further
B. Based on the estimated integral of input function, imPprove the estimation accuracy. At each iteration,
the coefficients inA can be estimated by least square ~~ — Given the estimated,* from the previous iter-
regression. Using the estimate Af, which is the esti- ation, for each voxel, the coefficientd/;r and
mated{V;r, b;} for all voxels, the integral of the input b; are estimated using least square regression.
function can be calculated from equation (7) for each ~ — For each voxel, given the coefficientd/r,
voxel. The estimate of™ can be updated based on the bi}, the integral of the input function can be
calculated integrals from all the voxels. Note that, the calculated from equation (7).

initial estimate is obtained by the intersection of activity- — The estimate ot} is updated by the average
spaces, where the monotonicity is not guaranteed. In of the calculated integrals that are monotoni-
the iterative least square procedure, the monotonicity cally increasing. The estimate ef* is then
can be easily enforced by updatirgf* based on the normalized to a unit length vector.

average of the calculated integrals that are monotonically ~ — Iterate until convergence, the difference be-
increasing. The process iterates until convergence, when tween estimated;" in consecutive iterations
the difference between estimated™ in consecutive is below a certain threshold.

iterations is below a certain threshold. Note that, if the data dynamic follows the two-

The minimization problem in (16) has many local mineompartment model, equation (6) holds during the entire
imizers. Therefore, in order to solve for the global mirexperiment. In this caseé; = 0 and the integral of the
imizer, a good initialization is required. In our schemeanput function during the entire experiment can be esti-
the activity-subspace approach is employed to obtain timated. If the data follow the three-compartment model,
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equation (6) is an asymptotic relationship which holdsstimating the activity-subspaces and the integral of the
for the later duration of the experiment. In this cas@put function.
t* > 0, and for the integral of the input function, only Using the input function in Figure 2(a) and the kinetic
the time points later that can be estimated. The valugparameters listed above, we simulate the TACs of the
of t* needs to be carefully chosen. The choice’ols a two voxels under the noise free case, shown in Figure
trade-off between bias and variance. Since the graphi2édl). Base on the noise free TACs and the integral of the
analysis (GA) plot is an asymptotical relationship for thmput function, the kinetic parameters in equation (6) can
later part of the PET experiment, if we choose a largbe obtained through linear regression. We also calculate
t*, equations (6) and (7) will better fit the TACs. On théhe kinetic parameters based on the noise free TACs and
other hand, since only the time points aftérare used the normalized integral of the input function. The results
to define the activity-subspaces, largéewill reduce the are shown in Table I. In this table, we can see that,
available time points and thus decrease the robustnesshef relative ratios between the two voxels’ distribution
the estimated activity-subspaces. volumes in both cases are the same. In the case where
normalized integral of the input function is used, the
calculated distribution parameters of the two voxels are
scaled by the same factor, compared with the case where

In the previous section, a novel idea of estimating thRe true integral of the input function is used. Therefore,
input function from activity-subspaces is proposed. War the purpose of estimating distribution volume para-
this section, we examine the performance of the activityhetric image, the knowledge of the normalized integral
subspaces approach through simulation. of the input function will lead to the same performance

The time activities of two voxels are simulated byith the case where the true integral of the input function
the three-compartment model. The kinetic parametersigknown. In the following, the normalized integral of the
the simulated voxels arg;; = 3.6247, k12 = 0.0659, input function and the kinetic parameters in the bottom
ki3 = 0.0306, k14 = 0.0372 and kp; = 4.0716, k2o = row of Table | will serve as the ground truth of the
0.0387, kog = 0.0507, koy = 0.0229, respectively. The simulation.
parameters are derived from a brain PET study of healthyin order to examine the impact of noise on the pro-
control subjects using C-11 labeled DASB, as describpdsed activity-subspace approach, we consider a realistic
in section V. The input function used in the simulationoise model. As suggested in [18], the measurement
is shown in Figure 2(a), where the circles indicate th&rror variance is proportional to the imaged radioactivity
time points when the input function is sampled. Similatoncentration and is inversely proportional to the scan
with the brain PET study in section V, the activity of theluration. Therefore, we consider the noise model that
simulated voxels are measured at 18 serial time pointgise terms are independent Gaussian with variances,
which are different from the sampling time points of M
the input function. Since our vector form formulation in o?(i,t;) = aL"(t]’)

()

equation (7) evaluates the integral of the input function tj =t
at the time points that correspond to the measured vof@l j = 1,...,n, wherea is a constant determining the
activity, we integrate the input function and resample fitoise level;c;(t;) is the simulated noise-free TAC of
at the 18 time points of the voxel activity measurementpxel : at time¢;; X is the radioisotope decay constant.
as shown in Figure 2(b). Moreover, in section IlI-A, i
is mentioned that the activity-subspace approach is o
able to estimate the direction ef" (the shape of the with {¢/(t;)} being the noise-free TAC for voxel The
integral of the input function), and the estimated integrabise levels ranging frond% to 5% are tested in the
of the input functioné;”t is constrained to be a unitsimulation.
length vector. Therefore, a successful estimaﬁ;@ﬁwill At each noise level, we simulate 1000 runs, generating
equal to the normalized integral of the input functionl000 pairs of noisy TACs of the two simulated voxels. In

denoted ag’" = - ci". The normalized integral of each run, the activity-subspace approach in section IlI-

c?nt
the input function ‘isps‘hcfwn in Figure 2(c), which is wha# is used to estimate the integral of the input function
we plan to estimate using the activity-subspace approafrom the noisy TACs. With the estimated integral, the
The value of parameter* is chosen to be* = 20. In distribution volumes of the two simulated voxels are
the simulated data and the real PET data, there arediimated by least square regression of equation (6). The
time points aftert* = 20. We choose™ to be as large ratio between the estimated distribution volumes is used

as possible, while guaranteeing enough time points fiorshow the estimation performance. At each noise level,

IV. SIMULATION RESULTS

: (17)

rlll—lggre, we define the percent noise leve
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Figure (a) is the input function used in the simulation. Figure (b) is the integral of the input function, resampled at the time points
that correspond to the sampling point of voxel activity. Figure (c) is the normalized integral of the input function. Figure (d) shows the TACs

voxel 1 voxel 2 ratio
regression based on noise free TACs gnilir = 95.0525 | Vop = 294.9598 | Vip/Var = 0.3223
true integral of the input function b1 = —34.5938 | by = —90.2277
regression based on noise free TACs andlir = 72123.4 | Var = 223807.7 | Vir/Var = 0.3223
normalized integral of the input function b; = —34.5938 | by = —90.2277
TABLE |

KINETIC PARAMETERS OF SIMULATED VOXELS CALCULATED BASED ON TWO CASES NOISE FREETACS AND TRUE INTEGRAL OF THE
INPUT FUNCTION; NOISE FREETACS AND NORMALIZED INTEGRAL OF THE INPUT FUNCTION

we calculate the average and standard deviation of {h@rameters instead; the distribution volume is calculated
ratio from the 1000 simulation runs. via a complicated function of the estimated parameters
For the purpose of comparison, we implemented ti@d thus its estimation error can be severely amplified.
lterative Quadratic Maximum-Likelihood (IQML), be-Moreover, we believe that the comparison with the 2-
cause IQML yields the best performance among the thre@mpartment model IQML is more fair, because it has
blind estimation algorithms compared in [13]. There aessentially the same complexity as the Logan plot in
both 2-compartment model and 3-compartment modérms of the number of model parameters. Therefore,
versions of IQML [20]. Since the simulation is base#e choose to compare the proposed method with the
on the 3-compartment model, due to the reason of Aegcompartment model version of IQML. To ensure that
model mismatch, the 3-compartment model IQML yield§ML achieves its best performance, we use the true
more accurate result than that of the 2-compartmefipetic parameters as its initial. The results are shown in
model one under noise-free case. However, the estimaiédle Il.
distribution volume in 3-compartment IQML is very In Table IlI, at thed% noise level, although the integral
sensitive to noise even when very small noise is addeflthe input function is estimated based on the noise
and can be less accurate than that of the 2-compartmigaé TACs, the estimation is not perfect. This is because
IQML. We think the intuitive reason is as follows. Theof two reasons. First, the activity-subspace approach is
3-compartment model IQML does not directly estimateased on the Logan plot, which is an asymptotically
the distribution volume and it estimates a set of Wnhear relationship for the later part of the TACs. Since
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Vir/Ver | Activity-subspace IQML V. REAL DATASETS

noise level| mean std mean std )
0 0.3236 0 | 0.2801 0 _ _
1 03247 0.0303] 02799 0.0092 We now examine a bralr_l PET 'study. The_ PET data
2 0.3334 0.0592| 0.2780 0.0171 of healthy control subjects is obtained after intravenous
3 0.3502  0.0665| 0.2759 0.0278 injection of C-11 labeled DASB, a radioligand used for
4 03675 0.0787) 02729 0.0387 imaging the serotonin transporter (SERT). The experi-
5 0.3921 0.0782| 0.2741 0.0505 | detail h i 121 1 | 10 subi

True ratioViz /Var= 0.3223 mental details are the same as in [2]. In total, 10 subjects

are tested . A dynamic PET study is performed with a GE
Advance PET camera with an axial resolution (FWHM)
of 5.8 mm, and an in plane resolution of 5.4 mm. This
scanner acquires 35 simultaneous slices of 4.25 mm
thickness. A transmission scan is first obtained with twin
10 mCi germanium-68 pin sources for 10 minutes for the
purpose of attenuation correction of the emission scans.

the noise-free data is simulated based on the thrd& serial dynamic PET images are acquired during the
compartment model, there is model mismatch betwebf$t 95 minutes after injection using the following image
the true three-compartment model and the Logan pl§gquence: four 15 sec frames, three 1 min frames, three
Second, the activity-subspace of a voxel is spanned Bynin frames, three 5 min frames, three 10 min frames,
the voxel TAC and its integral. With the 18 available tim@nd two 20 min frames. All PET scans are reconstructed
points of the voxel TAC, the numerical integration of th&ising the Ramp-filtered back-projection technique in a
voxel TAC introduces error. For the same reason, IQME28x128 matrix, with a transaxial voxel size of 2x2 mm.
method also gives non-zero erroi0&t noise level. Since All PET data are corrected for attenuation, injected dose
the IQML method assumes two-compartment model f@nd radionuclide decay.
the entire TAC, the model mismatch is larger, and thus For the invasive measurement of the input function, a
a larger error is observed. A% noise level, since no radial artery line is placed by an anesthesiologist. During
noise is added, the estimation results from the 1000 ruhe PET study arterial blood samples are withdrawn
are identical, which results in 0 standard deviation of tfeyery 5-7 seconds during the first two minutes, then
estimation error. with increasing time intervals until the end of study 95
From Table I, we can see that the proposed activityainutes post injection. Exact times of blood sampling
subspace is more sensitive to noise. This result is akk® registered. The blood samples are centrifuged and
confirmed in [15]. In this table, we can see that the IQMplasma activities are counted in a gamma counter cross-
method, although more robust to noise, consistengplibrated with the PET scanner every day. The exact
generates biased estimates. This is again because oftithe difference between the start of camera and the start
model mismatch between the two-compartment modaflgamma counter is registered for decay correction. The
assumed by IQML and the three-compartment modeput function is corrected for metabolized radioligand
based on which the data is simulated. On the othagtivity. For this purpose, 2 ml arterial plasma samples
hand, the propose activity-subspace approach estimates obtained 5, 15, 30, 60 and 90 minutes post injection.
the integral of the input function, which leads to mordhe extent of metabolism of C-11 DASB is determined
accurate estimates of the relative distribution volumgsing high performance liquid chromatography (HPLC).
The only concern, so far, is the noise sensitivity. Missing data points of the correction function that de-
Therefore, in order to obtain reliable estimates usirggribes the percent unmetabolized tracer are obtained by
the activity-subspace approach, the noise level needdtexponential interpolation [2].
be kept small. This is our motivation for employing For the dynamic brain PET image data, we first
mPCA clustering. We also apply iterative least squaperform preprocessing to identify voxels that belong to
method to further improve the accuracy of the estimatéide brain region. A simple masking method is applied
integral of the input function and simultaneously estio sketch out the brain region. Based on the 18 dynamic
mate the distribution volume parameters. In the followinBET images of the 18 time points, the sum of intensities
section, we analyze the data set from a brain PET study,the observed TACs for all voxels are calculated. Vox-
and demonstrate that the activity-subspace approach,dls with intensities less thait, of the highest intensity
gether with the mPCA and iterative least square methoasxel are regarded as non-scalp voxels and discarded.
is able to estimate both the integral of the input functiofhe remaining voxels are considered as the brain region
and the distribution volume parametric image. for further estimation of the integral of the input function

TABLE I
MEAN AND STANDARD DEVIATION OF THE RATIO BETWEEN THE
ESTIMATED DISTRIBUTION VOLUMES OF THE TWO SIMULATED
VOXELS.
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Fig. 3.  Results from subject 2. Figure (a) shows the normalized the integral of the measured input function, the estimated integral of
the input function based on activity-subspaces, and the refined results by further applylnlg iterative least square.Figure (b) is the scatter plot
of the estimated distribution volumes based on the measured and estimated integrals. Figure (c) shows the distribution volume parametric
image of slice 15 based on the measured integral. Figure (d) shows the distribution volume parametric |mage based on the estimated integral
Figure (e) is the difference between Figures (c) and (d). The images shown are after 3-by-3 neighborhood median filtering.
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subject| PM || subject| PM

0.024 6 0.018
0.012 7 0.031
0.038 8 0.261
0.006 9 0.041
0.068 10 0.018

and the distribution volume parametric image.

After preprocessing, the brain region is identified.
In section IV, it is shown that, the proposed activity-
subspace approach is sensitive to noise. Therefore, we
cannot directly apply the activity-subspace approach
based on the noisy voxel TACs. To reduce the noise, we TABLE 1l
take voxels from the brain regions of all slices, and applyHE PM METRIC THAT QUANTIFIES THE DIFFERENCE BETWEEN
the mPCA approach in section 111-B to group the braiffHE DISTRIBUTION VOLUME PARAMETRIC IMAGE BASED ON THE
voxel TACs into two clusters. The activity of each clustePROPOSED METHOD AND THAT BASED ON THE MEASURED INPUT
is represented by the average of voxel TACs within this FUNCTION.
cluster. Through averaging, the noise is reduced. Then,
the integral of the input function is estimated using

the activity-subspace approach, which operates on the . . . 0
cluster average TACs. In Figure 3(a), we use the Jipage based on the estimated integral contain 1.2% error,

for subject 2 as an example. The estimated integral cqmpared with the distribution volume image based on

the input function is shown by a solid line labeled Witl’tl € mt_easured input function. In Figure .3 (.C) a_nd (d), we
; . ._use slice 15 as example to show the distribution volume
stars. The normalized integral of the measured inpu

function is shown by the solid line labeled with circlesP2raMetric images based on the measure and estimated

. . . integral of the input function. The difference image is
To improve the accuracy of the estimated integral 0 A :

: . ) . shown in Figure 3(e). The images shown are after 3-
the input function, the iterative least square method jn

section IlI-C is applied to iteratively refine the estimate y-3 neighborhood median filtering. In Figure 3 (c) and

integral of the input function based on the TACs of a ), both images show the expected high binding in the

. : : . region of basal ganglia and the midbrain.
brain voxels. In Figure 3(a), the refined estimate of theIn total, we analyze 10 subjects. In Table IIl, we

integral is shown by the solid line labeled with trlangles.hOW the P that quantifies the difference between

Aft_er obtaining the es_tlmated mtegra_tl of .the_ "NPUL e distribution volume parametric images based on the

function, we further estimate the relative distribution . . s of the i ¢ .

volumes. Based on the estimated integral of the inpe?“mateOI and measured integrals of the input function.
’ Igrom Table Ill, thePM error for most of the subjects are

function, the relative distribution volume parameters arana”, and the averagBM is 5.2%. Excluding subject

obtained by linear regression of equat!on (7.) fpr ca\with extremely largeP M, the average error reduces to
voxel [18]. For comparison, the relative distributio . e L
.8%. To better illustrate the estimation error, in Figure

volume parameters are also calculated based on fhe . .

. ) : . , we show the estimated integral and the scatter plot of
normalized integral of the measured input function. In’_. C .
Figure 3(b), the scatter plot of the relative distributioﬁs’tlmated distribution volumes, (a) and (b) for subject 1,

9 ' erp whoseP M is 2.4%; (c) and (d) for subject 9, who&a\/
volume parameters is shown, where each dot corte-

(V] i JenN/ i )
sponds to one voxel, the horizontal and vertical axIS 4.1%; (e) and (f) for subject 8, who 'S 26.1%.

: . or subject 8, the proposed method gives an incorrect
represent the estimated parameters with the measure . o
. ) . . estimate of the integral. The scatter plot in Figure 4 (f)

and estimated integral of the input function. The scattg . : . ) 2
. ST shows a linear relationship. The estimated distribution

plot closely follows the 45 degree line, which indicates . : .
. S0 ) .~ ~yolume image is of lower contract, compared with the
high estimation accuracy. To quantify the estimation

. . . case where the input function is measured. Therefore,
accuracy, we compute the normalized relative distan

. L e estimated distribution volume image is qualitatively
(PM) between the true and estimated parametric images

PM is defined to compare the two parametric ima esméaningful but quantitatively incorrect. For the other
P P 9Shine subjects, the proposed method is able to estimate the

G B WNE-

1N B - integral of the input function and the distribution volume
PM = N Z |(Vir — Vir) Vi |, (18) parametric image, giving an average error of 2.8.%.
=1
whereV;7 is the relative distribution volume obtained by VI. DISCUSSIONS

the normalized integral of the measured input function, In this paper, we presented an activity-subspace ap-
Vir is the estimated relative distribution volume based @roach for estimating the integrated input function and
the estimated integral of the input function, aidis the the relative distribution volume parametric image. Rather
total number of voxels in the brain region. For subjet¢han providing absolute quantification, the proposed

2, PM = 0.012, meaning that the distribution volumemethod only estimates the relative distribution volume
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Fig. 4. The left column is the measured and estimated integrals of the input function. The right column is the scatter plots of the estimated
distribution volume parameters. Figure (a) (b) correspond to subject 1; (c) (d) correspond to 9; (e) (f) correspond to subject 8.

within a scale factor. The scale factor is a common issagery is included in the dynamic images, after metabolite
to any blind identification methods where no assumperrection, the ratio between the input functions of two
tions are made on the unknown input function. Whesubjects can be inferred from the intensities of the
analyzing PET data of a single subject, the relative distartery voxels, and we can further use the ratio to adjust
bution volume is useful for comparisons across differetite estimated relative distribution volumes of the two
slices or ROIs. For comparisons across subjects, an isatbjects. Another possible option for achieving absolute
portant issue, absolute quantification of the distributiaquantification is to take a single arterial sample during
volume, needs to be addressed, and therefore additiss@dnning (or a venous sample if the relationship between
assumptions or additional data are required. For exampéeerial concentration and venous concentration is well
if the total amount of dosage is controlled such that thestablished) to provide a reasonable estimate of the scale
integrals of the input functions of different subjects aractor, though more research efforts may be needed for
the same, the proposed method can be applied. If tihetermining the optimal time point to take the sample.
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In the analysis of the PET DASB study in Sectiothe noninvasive studies when the measurement of plasma
V, the measured input function is considered as tlmput function or a reference region is unavailable, the
gold standard [4] shed light on the validity of this proposed activity-subspace approach, together with the
gold standard In [4], it was shown that the estimatednPCA method and the iterative least square method,
kinetic parameters by several methods were consistéatable to efficiently estimate the integral of the input
including the Logan plot [17] and a reference tissu@nction and the distribution volume parametric images.
method SRTM [9]. Logan plot assumed knowing then a real dynamic PET data set of 10 subjects, the
measured input function, while SRTM assumed a regfroposed method achieved an average error of 5.2%
erence region. Although the two methods started frooompared with the case where the true input function
different assumptions, the estimated kinetic parametéssmeasured and known.
were consistent, indicating that both the measured input
function and the reference region were correct. In Section APPENDIX
V, we observe that, in most subjects, the estimatedAn EM algorithm for estimating mPCA model is
integral of the input function is close to the normalizeBroposed in [19]. The algorithm can be summarized as
integral of the measured input function. This observatidallows. Given the model parameters from initialization
enhanced our belief that, it is reasonable to regard the previous iteration, the probability of observatign
measured input as thgold standardin this study. conditioning on the:” probabilistic PCA model param-

A challenging question general to blind identificatiogters can be calculated,
methods is that how to tell whether the estimates arep(y;|k) = [ p(yilz, k)p(z|k)dx
correct or not, when the true parameters are unknown. — (gw)—d/Q|Ck|—1/26—§(yi—uk)TCk‘l(yi—uk)

We are lack of a theoretical answer to this question. (19)
Heuristically, it is observed from Figure 4(e) that thevhereCy = 021+ W, W' Given the prior probabilities
estimated integral of the input function is incorrect singg(k) of a set of K probabilistic PCA models, the
the shape of the integral is clearly incorrect. For moraarginal probability of observatiop; is,

challenging cases where the shape of the estimated inte- K

gral may look correct, though not observed in our study, p(yi) = Zp(y,-]k:)p(k), (20)
one possible solution is to examine the statistical stability k=1

via bootstrap, similar to the reproducibility idea in [4]and the posterior probability of thgh probabilistic PCA
We can generate bootstrapped data sets and estimateribélel can be expressed as

integral from each bootstrapped data set. If the estimated ¥

: ) > \ _ pyili)p(k)

integrals from different bootstrapped data are statistically p(kly:) = Ty (21)
consistent, we can have certain confidence in the res P\bi

if otherwise, this can be an indication of failure. Lfjﬁerefore, the posterior probability can be used for the

classification purpose.
VIl. CONCLUSION In the M-step, the update of model parameters can
be summarized as follows. Suppose there are in tital

Of interest in this paper is the estimation of th?/oxels under consideration.

total distribution volume parametric image in PET study

N

when the knowledge of the plasma input function is Sk — iz Elu:

. . p(k) ~ 2 P(klya)
not available. In this paper, we have presented a novel Pt
concept of activity-subspace, and derived the method for N Zil\il p(k|y:)yi
estimating the integral of the input function by exploring M = W
the intersections of the activity-subspaces spanned by  _ i=1P N Yi R .
the voxel cluster TACs and their integrals. No prior Wy = kak(UkIJer Wi SkWi)
information regarding the input function or the reference 52 = gtT(Sk _ SkaM;WkT)

region is needed in the proposed method. We presented

the mixture Principal Component Analysis to group thehere,p(k), i, Wi, o7 are the updated model parame-
brain voxels into clusters, so that the noise is reducests for thek! probabilistic PCA model in the mixture,
and the activity-subspace approach is able to estimate dmel

integral of the input function more reliably. An iterative 1 XN _ o
least square method is incorporated to further improve Sk = SN > p(kly:) (yi — i) (yi — Fik)
the accuracy of the estimated integral of the input i=1

function. Results from a PET brain study show that, for Mr = oid + Wi Wy
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