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Abstract—DNA methylation exhibits different patterns in dif-
ferent cancers. DNA methylation rates at different genomic loci
appear to be highly correlated in some samples but not in others.
We call such phenomena as conditional concordant relationships
(CCRs). In this study, we explored the DNA methylation patterns
in 12 common cancers in 2434 patient samples using data
collected by The Cancer Genome Atlas (TCGA) project. We
developed an exploratory method to characterize CCRs in the
methylation data, and identified the 200 most significant gene
markers whose on-and-off statuses in DNA methylation are
associated with drastic changes in CCRs throughout the genome.
Clustering analysis of the methylation data of the 200 markers
showed that they are tightly associated with cancer subtypes.

Index Terms— TCGA, methylation, conditional correlation.

I. I NTRODUCTION

DNA methylation plays an important role in carcinogenesis
and progression through hypermethylation to turn off the
expression of tumor suppressors and hypothmethylation to
activate the expression of oncogenes [1]. Genomic analyses
of DNA methylation using microarrays and next generation
sequencing technologies revealed that various forms of neopla-
sia and cancers are associated with massive changes in DNA
methylation [2]. Such changes are often distinctive depending
on the subtypes of cancers [3]. DNA methylation in the cells
is apparently regulated by a large intricate network. However,
while a large number of genomic network studies focused
on data of gene expression, protein-protein interactions, and
protein-DNA/RNA interactions [4], [5], little has been done to
incorporate DNA-methylation data to understand the underly-
ing regulatory network.

In general, relationships that link different genes at DNA,
RNA, protein, and metabolites levels strongly depend on the
specific context, such as cell type, sub-cellular location and
time of the biological processes. A number of methods have
been developed to uncover context-dependent relationships
using gene expression data. For example, the liquid association
model was developed to identify mediator genes that can
modulate coexpression of other pairs of genes [6]. A few
other similar models were also proposed to describe three-
way relationships among genes [7]–[9]. Cancer type dependent
coexpression patterns were reported in [10], [11]. In [12],
the MINDy algorithm used conditional mutual information to
identify modulators that strongly affect the concerted activities
of transcription factors and their targets, and found novel
modulators of MYC function in B cells.

In this study, we focused on the dynamic nature of con-
cordant relationships between the methylation status of genes,
using a large DNA methylation dataset of 2434 samples across
12 cancer types generated by The Cancer Genome Atlas
(TCGA) project. We observed that many gene-pairs showed
dramatic changes in methylation pattern in different cancers.
We call such phenomena as conditional concordant relation-
ships (CCRs). We are interested in finding marker genes that
have the following property: depending on the methylation sta-
tus of the marker, the patient samples can be dichotomized into
two groups, and the gene-gene correlation matrices derived
from the methylation data of the two groups are drastically
different. Such markers are likely to be associated with global
changes in the methylation correlation patterns. The concept
of the methylation markers resembles the modulator in the
three-way gene expression studies [7]. We developed a method
to identify such markers, and demonstrated the utility of our
approach to study CCRs, classify cancer subtypes, and explore
the patterns of DNA methylation in cancer.

II. RESULTS

A. Genomic patterns of DNA methylation in cancers

To show the overall pattern of DNA methylation in cancers,
we downloaded methylation data of 2434 samples across 12
cancer types from the TCGA data portal [13], and performed
hierarchical clustering analysis. Table I showed the sample size
of each of the 12 cancer types. This dataset contains 27,578
probes interrogating proximal promoter regions of 14,475
genes in the human genome. The methylation status of many
probes showed small variance, and therefore do not contribute
to the clustering analysis. We hence removed the non-changing
probes and kept∼9000 probes that have the highest variance
across samples. We also removed probes on the X and Y
chromosomes because their methylation rates mainly reflected
gender difference rather than disease or tissue differences.
Figure 1 showed the cluster diagram generated from the 9000
probes across 2434 samples, with each row representing one
probe and each column representing one sample. The bottom
panel showed the tissue type and normal-cancer status of the
samples. It can be observed that the samples were mostly
organized by tissue types, with some noticeable outliers. GBM,
LAML, OV, BRAC and UCEC samples formed their own
clusters. READ and COAD samples were grouped together.
The kidney cancer samples and the normal kidney samples
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Fig. 1. Clustering diagram of the whole genomic pattern observed in 2434
samples across 12 common cancers.

were clustered close to each other. The normal and cancer
samples of LUAD and LUSC were mixed with each other,
but scattered across the clustering diagram. The majority of
the lung samples appeared to be similar to KIRC. The STAD
samples formed three groups. A subset of the STAD cancer
samples were clustered with READ and COAD, while the
remaining STAD cancer samples were clustered with lung
cancer samples. The STAD normal samples appeared to be
similar to another group of lung cancer samples.

B. Identifying the markers associated with global changes in
gene-gene correlations

To systematically evaluate the CCRs, we searched for
marker probes associated with a large number of CCRs. We
randomly selected 1500 samples as the training set, and the
remaining samples were reserved as the testing set. Based
on the training samples, we selected∼9000 high variance
probes, derived scores to evaluate each probe’s association

TABLE I
CANCER TYPE AND SAMPLE SIZE OFTCGA METHYLATION DATA

Cancer Type Sample size
cancer normal

GBM - Glioblastoma multiforme 291 0
LAML - Acute Myeloid Leukemia 188 0
KIRC - Kidney renal clear cell carcinoma 219 199
KIRP - Kidney renal papillary cell carcinoma 16 5
LUAD - Lung adenocarcinoma 128 24
LUSC - Lung squamous cell carcinoma 134 27
STAD - Stomach adenocarcinoma 82 59
READ - Rectum adenocarcinoma 70 1
COAD - Colon adenocarcinoma 168 15
BRCA - Breast invasive carcinoma 186 0
UCEC - Uterine Corpus Endometrioid Carcinoma 70 0
OV - Ovarian serous cystadenocarcinoma 542 10
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Fig. 2. Clustering diagram of 2434 cancer samples and 200 top probes
associated with CCRs.

with CCRs, and rank-ordered the probes (see Methods). These
high variance probes were also scored based on the testing set.
The scores derived from training and testing data were highly
correlated (Pearson correlation> 0.95), suggesting that the
top ranked probes and their scores were robust.

We performed clustering analysis of all 2434 samples based
on the top 200 probes selected from the training set. As shown
in Figure 2, the top 200 CCR-associated probes were able to
separate cancer types. Similar to the previous analysis based
on 9000 high variance probes, the top CCR-associated probes
defined distinct clusters for GBM, LAML, OV, BRAC and
UCEC, respectively. READ and COAD samples were grouped
into one cluster. The major difference was the clustering of the
lung samples. Based on the CCR-associated probes, the two
subtypes of lung samples (LUAD and LUSC) formed one tight
cluster. Normal lung samples were grouped with KIRCs in the
previous analysis, but the CCR-associated probes highlighted
the difference between them.

For most cancer types where normal and cancerous samples
were both available, the cancerous and corresponding normal
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Fig. 3. (a) Clustering and diagram of 291 GBM samples based on top
200 CCR-associated probes. (b) Kaplan-Meier plot of the survival data of the
two GBM subgroups observed in (a). The survival of the two groups showed
significant differences (logrank test pvalue10−5).

samples were clustered close to each other. This observation
suggests that the methylation difference across different tissue
types is larger than cancer-induced methylation changes. The
only exception in this dataset was STAD. In Figure 2, we
observed that the STAD normal samples were more similar to
the lung samples, while the STAD cancer samples were more
similar to the COAD and READ samples. This observation
indicated that methylation might play a major role in stomach
adenocarcinoma.

C. CCR-associated markers recovered GBM subtypes

In the previous section, we showed that when applied to
all samples containing multiple tissue types, the top CCR-
associated markers were able to separate tissue types. A natural
next step was to focus on one cancer type, and examine
whether the CCR-associated markers can identify cancer sub-
types. We focused on the 291 GBM samples, selected∼9000
high variance probes, scored each probe’s association with
CCRs, rank-ordered the probes, and used the top 200 probes to
perform clustering analysis. Figure 3 (a) showed the clustering
diagram of the 291 GBM samples based on the top 200 CCR-
associated probes. We observed that the GBM samples were
divided into two groups. The clinical outcome of the smaller
group was significantly better than the bigger group, as shown
in Figure 3 (b). The smaller GBM sample group with better
survival was first reported in [14]. This group of samples
carry a CpG island methylator phenotype, which is associated

with better survival and low-grade gliomas. In [14], clustering
analysis was performed based on 1500 high variance probes,
and discovered three GBM subtypes. One of the three was
the smaller sample group in Figure 3 (a). The remaining two
corresponded to the bigger group in our analysis, but there
was not significant evidence for the biological and clinical
difference between them.

III. D ISCUSSION

We described an approach to explore complex patterns
observed in DNA methylation data. We identified conditional
concordant relationships (CCRs) and markers associated with
global changes of methylation correlation in different can-
cers. Expectedly, when the identified markers were used for
clustering analysis, the clustering diagram largely coincided
with cancer types, since distinct methylation patterns exist
in different tissue types. We demonstrated that our approach
can be used to uncover tissue types and subtypes of cancer.
In this sense, our method is similar to feature selection and
unsupervised clustering.

The current study is limited to methylation data only.
However, data from multiple platforms measuring gene expres-
sion, microRNA expression, DNA copy number and somatic
mutations can all be evaluated as candidate markers that affect
CCRs in DNA methylation. Integrating data from multiple
platforms will be increasingly powerful as more data are being
accumulated in the TCGA project.

IV. M ETHOD

A. Data and Preprocessing

In this study, we focused on the DNA methylation data pro-
vided by The Cancer Genome Atlas (TCGA) project. Genome-
wide methylation measurements of 2434 samples were avail-
able, spanning across 12 cancer types. The data were generated
using the IIllumina Infinium Human DNA Methylation27 array
platform, which interrogates the methylation status of 27,578
CpG sites for each sample.

We used the level 3 methylation data defined by TCGA,
which is the ratio ofMi/(Ui + Mi) for each CpG sitei.
Mi represents the methylated probe intensity of CpG sitei,
while Ui is the unmethylated probe intensity. Therefore, the
numerical range of the data is between 0 and 1. 0 means
unmethylated, and 1 means completely methylated. The data
contains null entries, which correspond to probes that overlap
with known single nucleotide polymorphisms (SNPs) or other
genomic variations, and probes whose signal intensities are
lower than the background. In our analysis, we filtered out
probes with many null entries (number of nulls more than 1%
of the sample size) and probes with small standard deviation
(SD < 0.1). Roughly 9000 probes survived these two filtering
criteria, and were considered in the analysis of conditional
concordant relationships.

B. Dichotomize samples based on methylation

Although DNA methylation is a reversible process and
methylated CpG sites may not be completely methylated,



methylation data appear to be bimodal in general. By thresh-
olding the ratioMi/(Ui + Mi) (i.e. nominal threshold 0.2),
we can use probei to divide samples into two groups. The
status of CpG sitei in one group is unmethylated, whereas
the CpG site i in the other group is methylated. If the
methylation correlation patterns in the two sample groups are
quite different, the CpG sitei is likely to be related to the
global changes of methylation regulation.

C. Clustering

Before calculating the changes of methylation correlation,
clustering is performed to find modules of highly correlated
probes. The purpose is to reduce the computational complex-
ity. The pairwise correlations between the modules can be used
as surrogates of the pairwise correlations between individual
probes.

We use a variation of agglomerative clustering algorithm
[15], [16]. This algorithm requires a user-specified threshold
for cluster coherence, defined as the average Pearson correla-
tion between each probe in the cluster and the cluster mean.
This parameter determines the quality of the resulting clusters
(the default setting is 0.7). At the beginning of the first iteration
of the agglomerative algorithm, each probe forms its own
cluster. One probe is randomly chosen and merged with its
nearest neighbor defined by Pearson correlation and average
linkage, and these two probes become unavailable in the
current iteration. Then, another probe is randomly chosen from
the remaining ones and merged with its nearest neighbor, if
the nearest neighbor is still available. Again, the chosen probe
and its nearest neighbor become unavailable in the current
iteration. If a merge results in a cluster whose coherence is
below the user-specified threshold, the merge is rejected. After
all the probes become unavailable, the first iteration ends and
the number of clusters is reduced by approximately half. The
same procedure is repeated in the second iteration to further
reduce the number of clusters. The iterative process continues
until all merges in a particular iteration are rejected.

The algorithm guarantees that the quality of all the resulting
probe clusters is higher than the user-specified threshold. The
average of each cluster can be viewed as a meta-probe that
summarizes the average methylation status of the cluster of
correlated probes.

D. Identify CCR-associated switch-like probes

To identify CCR-associated probes, we used the training
samples to filter for roughly 9000 probes that had small
number of null entries and high standard deviation. These
probes were considered as candidates to be evaluated. We also
performed an agglomerative algorithm using the training set,
to cluster probes into modules that contained highly correlated
probes, and represented each module by the mean methylation
profile of probes in that module.

For each candidate probe, we evaluated whether its on-
off status affects methylation correlation globally. We di-
chotomized the training samples into two groups (i.e. threshold
= 0.2), computed the module-module correlation matrices

for the two sample groups separately, performed z-transform,
and summarized the difference between the two correlation
matrices into one scalar score (s =

∑
i,j |z1(i, j)− z2(i, j)|).

If a candidate probe resulted in an extremely unbalanced split
(i.e. the smaller sample group contained less than 15% of
the samples), this candidate probe was not scored, because
correlation based on small number of samples may not be
accurate and reliable. The candidate probes were rank-ordered
according to their scores, where the methylation status of top
ranking probes were associated to large changes of methylation
correlation.
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