
Fast Calculation of Pairwise Mutual Information for

Gene Regulatory Network Reconstruction

Peng Qiu, Andrew J. Gentles and Sylvia K. Plevritis

Department of Radiology, Stanford University, Stanford, CA

Abstract

We present a new software implementation to more efficiently com-

pute the mutual information for all pairs of genes from gene expression

microarrays. Computation of the mutual information is a necessary

first step in various information theoretic approaches for reconstructing

gene regulatory networks from microarray data. When the mutual in-

formation is estimated by kernel methods, computing the pairwise mu-

tual information is quite time-consuming. Our implementation signif-

icantly reduces the computation time. For an example data set of 336

samples consisting of normal and malignant B-cells, with 9563 genes

measured per sample, the current available software for ARACNE re-

quires 142 hours to compute the mutual information for all gene pairs,

whereas our algorithm requires 1.6 hours. The increased efficiency of

our algorithm improves the feasibility of applying mutual information

based approaches for reconstructing large regulatory networks.

Keywords: mutual information, gene regulatory network, microarray.

1

1 Introduction

Information theoretic approaches are increasingly being used for reconstruct-

ing regulatory networks from gene expression microarray data. Examples

include the Chow-Liu tree [1], the relevance network (RelNet) [2], the context

likelihood of relatedness (CLR) algorithm [3], ARACNE [4] and the maxi-

mum relevance minimum redundance network (MRNet) [5]. These specific

approaches and others start by computing the pairwise mutual information

(MI) for all possible pairs of genes, resulting in an MI matrix. The MI ma-

trix is then manipulated to identify regulatory relationships. The Chow-Liu

tree is a maximum spanning tree constructed from the MI matrix, where

edges are weighted by the MI values between connected nodes. In relevance

networks, an edge exists between a pair of genes if their MI exceeds a given

threshold. The CLR algorithm transforms the MI matrix into scores that

take into account the empirical distribution of the MI values, and then ap-

plies a threshold. ARACNE applies the data processing inequality (DPI) on

each connected gene triple, removing potential false positive edges in the rel-

evance networks. In MRNet, the maximum relevance minimum redundance

(MRMR) criterion [6] is applied, where the maximum relevance criterion

tends to assign edges to gene pairs that share large MI, while the minimum

redundance criterion controls false positives. The MRMR criterion is essen-

tially a pairwise approximation of the conditional MI. In [7], the conditional

MI is explicitly used for inference. If two genes share large MI but are con-

ditionally independent give a third gene, there is no edge between them.

These approaches have been applied successfully to simulated data and real

microarray data, identifying interesting regulatory targets and pathways.

The most time-consuming step in these approaches is computing the MI

2

matrix, because all possible pairs of genes need to be examined. When the

expression values of genes are treated as continuous random variables and

the MI is estimated by kernel methods, computing the pairwise MI can be

computationally expensive. For example, in a recently analyzed B-cell data

set consisting of 336 samples and 9563 genes per sample, [4], ARACNE takes

142 hours to compute the MI for all gene pairs.

We propose a faster way to calculate the pairwise MI, where the order of

the calculations is rearranged so that repeating operations are significantly

reduced. For the previously mentioned B-cell data set, the run time of our

algorithm is 1.6 hours. To explain our algorithm, in Section 2, we first briefly

review kernel based estimation of MI. Then we present the pseudo-code of

our approach. Section 3 illustrates the decrease in computation time, and

is followed by Conclusions.

2 Method

2.1 Kernel Estimation of Mutual Information

The MI between two continuous random variables X (a gene) and Y (another

gene) is defined as follows:

I(X;Y) =
∫∫

f(x, y)log
(

f(x, y)
f(x)f(y)

)
dxdy (1)

where f(x, y) is the joint probability density of the two random variables,

and f(x) and f(y) are the marginal densities. Given M data points drawn

from the joint probability distribution, (xj , yj), j = 1, ..., M , the joint and

marginal densities can be estimated by the Gaussian kernel estimator [8],

where

f(x, y) =
1
M

∑ 1
2πh2

e−
1

2h2 ((x−xj)
2+(y−yj)

2) (2)

3

f(x) =
1
M

∑ 1√
2πh2

e−
1

2h2 (x−xj)
2

(3)

and f(y) takes a similar form. h is a tuning parameter that controls the

width of the kernels. Since MI is an integration with respect to the joint

probability density, it can be written as an expectation with respect to the

random variables X and Y , and thus can be approximated by the sample

average,

I(X;Y) =
1
M

∑

i

log
M

∑
j e−

1
2h2 ((xi−xj)

2+(yi−yj)
2)

∑
j e−

1
2h2 (xi−xj)2

∑
j e−

1
2h2 (yi−yj)2

(4)

2.2 Existing Method for Pairwise Mutual Information

When the pairwise MI among N random variables (N genes) is considered,

Equation (4) can be calculated inside two nested for-loops, both of which

run from 1 to N . The software implementation for ARACNE [4] and MRNet

[5] both adopt this structure, as did our initial implementation. However,

we found this structure to be inefficient when coupled with kernel density

estimator, because of repeated calculation of kernel distances.

When estimating the MI between two random variables g1 and g2, Equa-

tion (4) evaluates the kernel distances between all possible pairs of data

points for each of the two random variables separately, e−
1

2h2 (g1i
−g1j

)2 and

e−
1

2h2 (g2i
−g2j

)2 , for all i, j = 1, 2, ..., M . When estimating the MI between

two random variables g1 and g3, the kernel distances e−
1

2h2 (g1i
−g1j

)2 are eval-

uated again. Therefore, when Equation (4) is computed inside two nested

for-loops, the kernel distances among data points of one random variable are

evaluated N − 1 times. For the large N in gene expression microarray data,

the repeated calculations will severely decrease the computational efficiency.

Avoiding the repeated calculations can significantly improve the computa-

4

tional efficiency of ARACNE. (Note: The implementation of MRNet in the

Bioconductor package does not suffer from this problem, because it does not

use kernel density estimation.)

A straight forward method to eliminate the repeats would be to pre-

compute the kernel distances for each random variable (gene). However,

such a method is not feasible because a large amount of memory would be

needed to store the kernel distances, which is a matrix of size N ×M2. In

the following section, we present an alternative fast algorithm for calculating

pairwise MI, where repeats are significantly decreased, with a moderate

increase in memory use.

2.3 Fast Calculation of Pairwise Mutual Information

In practice, when we encounter computational structures such as nested

for-loops, double summations and double integrals, switching the order of

the procedures may sometimes result in significant gain. For example, in

[9], switching the order of a double summation significantly increased the

computational efficiency of the intersection kernel support vector machine

applied to computer vision. The essential idea of our fast algorithm is to

switch the order of the nested for-loops, so that the repeated operations

can be pushed out of some of them. The detailed pseudo-code is as follows,

where the input data is stored in the variable data of N rows (genes) and

M columns (samples).
1: for i = 1 : M do

2: % kernel distance between the ith data point and all other points j for each gene k

3: for j = 1 : M do

4: SumMargin = zeros(N, 1)

5: for k = 1 : N do

6: Dist(k, j) = KernelDistance(data(k, j), data(k, i));

7: SumMargin(k) = SumMargin(k) + Dist(k, j);

5

8: end for

9: end for

10: % compute the ith entry of the first sum in Eqn (4) for all pairs of genes k, l

11: for k = 1 : N − 1 do

12: for l = k + 1 : N do

13: SumJoint = 0;

14: for j = 1 : M do

15: SumJoint = SumJoint + Dist(k, j)Dist(l, j);

16: end for

17: MI(k, l) = MI(k, l) + log(SumJoint
SumMargin(k)SumMargin(l)

);

18: end for

19: end for

20: end for

The above algorithm uses two strategies to improve the computational

efficiency. One is to pre-compute the marginal probabilities for each gene,

which avoids repeated calculations of the marginal probabilities inside the

double for-loops in lines 11-12. This strategy is also used in ARACNE. The

second strategy is to put the first summation in Equation (4) as the outer-

most for-loop, instead of the double for-loop running over all pairs of genes.

Using the second strategy, the kernel distance between any two particular

data points is evaluated twice, which is significantly less than the N times

repeats in ARACNE. This strategy is not currently used in ARACNE and

is the key difference between ARACNE and our proposed algorithm.

It is clear that the computation time of the proposed algorithm is of

complexity O(M2N2), which is the same as ARACNE [4, 10]. However,

since the proposed algorithm performs much less repeated calculations, the

computation time is significantly less than that of ARACNE. Simulation

results are shown in Section 3.

The gain in computational efficiency comes at the price of a small amount

of additional memory use, which is needed to stores the variables Dist and

6

SumMargin. The additional memory use is of approximately the same size

as the input data matrix.

In Matlab, some for-loops in the above pseudo-code can be written in

more compact forms using matrix multiplications. The Matlab code of our

algorithm is available at http://icbp.stanford.edu/software/FastPairMI/.

3 Results

We compare the computation time for obtaining the pairwise MI using

ARACNE’s Matlab and Java implementations downloaded from [4], and

the our fast algorithm written in Matlab. The tests are performed using

a personal computer (PC) with Intel Core 2 processor 2.66GHz. In Figure

1 (a), we fix the number of samples M = 200, vary the number of genes

N = 100, 200, ..., 1000, and compare the computation time of ARACNE and

the proposed fast algorithm in log-log scale. In Figure 1 (b), we fix the num-

ber of genes N = 1000 and vary the number of samples M = 50, 100, ..., 500.

In Figures 1 (a) and (b), the curves for ARACNE and our fast algorithm

share the same slope, meaning that the computation time of both methods

grows at the same rate as the data size increases. Although the compu-

tational complexity is the same, due to significant reduction of repeated

operations, the proposed fast algorithm achieves 15 to 89 times increase in

speed compared with ARACNE, where greater gains in speed are achieved

for data of larger size.

For a more realistic example, we examine the B-cell gene expression

data analyzed in [4], which contains 9563 genes across 336 samples. The

Java implementation of ARACNE takes 142 hours to compute the MI for

all gene-pairs, whereas our fast algorithm takes 1.6 hours.

7

4 Conclusion

When analyzing large gene expression microarray data sets by information

theoretic approaches, fast approaches are needed. We demonstrated a fast

method for calculating the pairwise mutual information based on kernel es-

timation. Our method achieves significant gains in speed when compared to

existing implementations, with modest increases in memory use. Moreover,

our method is not limited to the analysis of gene expression data, and can

be generally applied to speed up any algorithm that requires computing the

mutual information matrix.

Acknowledgement

We gratefully acknowledge funding from the NCI Integrative Cancer Biology

Program (ICBP), grant U56 CA112973.

Conflict of Interest

None declared.

References

[1] C. Chow, C. Liu, Approximating discrete probability distributions with

dependence trees, IEEE Trans on Information Theory, 14(3) (1968),

462-467.

[2] A.J. Butte, L.S. Kohane, Mutual information relevance networks: func-

tional genomic clustering using pairwise entropy measurements, Pacific

Symposium on Biocomputing, 4 (2000), 418-429.

8

[3] J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierbowski, G.

Cottarel, S. Kasif, J.J. Collins, T.S. Gardner, Large-scale mapping and

validation of Escherichia coli transcriptional regulation from a com-

pendium of expression profiles, Plos Biology, 5(1) (2007), e8.

[4] A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky,

D.R. Favera, A. Califano, ARACNE: an algorithm for the reconstruc-

tion of gene regulatory networks in a mammalian cellular context, BMC

Bioinformatics, 7(Suppl 1) (2006), s7.

[5] P.E. Meyer, K. Kontos, F. Lafitte, G. Bontempi, Information-theoretic

inference of large transcriptional regulatory networks, EURASIP Jour-

nal on Bioinformatics and Systems Biology, 2007(1) (2007), 9 pages.

[6] C. Ding, H. Peng, Minimum redundancy feature selection from microar-

ray gene expression data, Journal of Bioinformatics and Computational

Biology, 3(2) (2005), 185-205.

[7] W. Zhao, E. Serpedin, E.R. Dougherty, Inferring connectivity of genetic

regulatory networks using information-theoretic criteria, IEEE/ACM

Trans on Computational Biology and Bioinformatics, 5(2) (2008), 262-

274.

[8] J. Beirlant, E. Dudewicz, L. Gyorfi, E. van der Meulen, Nonparametric

entropy estimation: An overview, International Journal of the Mathe-

matical Statistics Sciences, 6(1) (1997), 17-39.

[9] S. Maji, A.C. Berg, J. Malik, Classification using intersection kernel

support vector machines is efficient, IEEE Computer Vision and Pat-

tern Recognition (CVPR), (2008).

9

[10] A.A. Margolin, K. Wang, W.K. Lim, M. Kustagi, I. Nemenman, A.

Califano, Reverse engineering cellular networks, Nature Protocols, 1(2)

(2006), 662-671.

10

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Genes (N)

C
o
m

p
u
ta

tio
n
 T

im
e
 (

se
c)

Fix Number of Sample to be 200

200 400 600 800

ARACNE matlab
ARACNE Java
our fast implementation

(a)

10
2

10
0

10
1

10
2

10
3

10
4

10
5

Number of Samples (M)

C
o
m

p
u
ta

tio
n
 T

im
e
 (

se
c)

50 200 300 400 500

ARACNE Matlab
ARACNE Java
our fast implementation

(b)
Figure 1: Comparison of computation time between ARACNE and our fast
algorithm. In Fig (a), the number of samples is fixed at 200 and the number
of genes varies from 100 to 1000. In Fig (b), the number of samples varies
from 50 to 500, and the number of genes is fixed at 1000.

11

