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Abstract—Great efforts have been made to develop both
algorithms that reconstruct gene regulatory networks and sys-
tems that simulate gene networks and expression data, for the
purpose of benchmarking network reconstruction algorithms.
An interesting observation is that although many simulation
systems chose to use Hill kinetics to generate data, none of
the reconstruction algorithms were developed based on the
Hill kinetics. One possible explanation is that, in Hill kinetics,
activation and inhibition interactions take different mathematical
forms, which brings additional combinatorial complexity into
the reconstruction problem. We propose a new model that
qualitatively behaves similar to the Hill kinetics, but has the
same mathematical form for both activation and inhibition. We
developed an algorithm to reconstruct gene networks based on
this new model. Simulation results suggested a novel biological
hypothesis that in gene knockout experiments, repressing protein
synthesis to a certain extent may lead to better expression data
and higher network reconstruction accuracy.

I. I NTRODUCTION

Microarray technologies measure the expression levels of
thousands of genes simultaneously, from which we may gain
insights into the gene regulatory networks that govern various
cellular processes. Understanding these networks can help
us to reveal the underlying mechanisms. Great efforts have
been made in reverse-engineering regulatory interactions from
microarray gene expression data. Examples include: Boolean
networks [1], information theoretic approaches [2], Bayesian
networks [3] and differential equations [4].

In addition, several systems that simulate gene networks
and expression data have been developed, for the purpose
of benchmarking network reconstruction algorithms [5; 6]. In
these simulation systems, gene expression data are simulated
by a set of coupled ordinary differential equations, where the
regulatory interactions are embedded using Hill kinetics [7], a
widely applied model for interacting biochemical reactions.

An interesting observation is that although many simulation
systems chose to use the Hill kinetics to generate gene expres-
sion data, none of the existing network reconstruction methods
were developed based on the Hill kinetics. One possible reason
is that the Hill kinetics uses different mathematical forms for
activation and inhibition. To reconstruct networks using the
Hill kinetics, one needs to not only identify which genes are
the regulators of each target gene, but also determine whether a
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regulator is an activator or an inhibitor. This brings additional
combinatorial complexity into the already difficult problem.
Such an observation motivated us to propose a new model
that behaves similar to the Hill kinetics, but has the same
mathematical form for both activation and inhibition. Based on
this new model, we developed an algorithm REDSIGN, which
REconstructs Directed SIgned Gene Network using steady
state microarray gene expression data.

II. M ETHODS

A. Hill kinetics in existing network simulation systems

In many existing network simulation systems [5; 6], gene
expression data are simulated in two steps. First, the topol-
ogy of a simulated network is either randomly generated
or sampled from known biological networks. In the second
step, ordinary differential equations are used to simulate the
dynamics of the network, where the regulatory interactions are
approximated by the Hill kinetics [7].

In the Hill kinetics, if genej is an activator of a target
genei, the activation function isGji = xn

j

xn
j +Kn

ji
+ 1, where

xj is the mRNA concentration of the activatorj, n is the
Hill-coefficient that controls the sigmoidicity of the activation
function, andKji is the binding affinity. When the activator
concentrationxj is 0,Gji equals 1. Asxj increases to infinity,
the value ofGji goes to 2. If genej is an inhibitor of gene

i, the repression function isFji = Kn
ji

xn
j +Kn

ji
. As the inhibitor’s

concentrationxj increases from 0 to infinity, the value ofFji

decreases from 1 to 0. The strength of a regulatory interaction
is inversely related to the binding affinity.

Given a network topology and the parameters in the Hill
kinetics, gene expression data can be simulated by a group of
coupled differential equations [6],
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(1)
where Di is the degradation rate constant of genei, Ti is
the maximum transcription rate. When both the activators and
inhibitors are absent, the basal transcription rate of genei is
βiTi. Ii is the set of genei’s inhibitors, andAi is the set of
activators.Zi is defined byZi = 1−βi

2|Ai|−1
, so that the whole

activation term falls into the numerical range[βi, 1].
Equation (1) uses different mathematical forms for activa-

tion (Gji) and inhibition (Fji). If one wants to develop a
network reconstruction algorithm based on the Hill kinetics
in equation (1), the estimated activators and inhibitors need
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Fig. 1. Example of activation and inhibition in Hill kinetics (K=10, n=1.5).

to be handled separately, which brings in an additional layer
of combinatorial complexity to the already difficult problem.
This partly explains why none of the existing network recon-
struction algorithms were developed based on the Hill kinetics.

B. REDSIGN

In the Hill kinetics, the influence of activators and inhibitors
on their targets is modeled by sigmoid functionsFji andGji.
An illustrative example is shown in Figure 1. As mentioned
above, reconstructing networks using these two different math-
ematical forms brings additional combinatorial complexity.
Therefore, we consider an alternative model,arctan, which
generates similar sigmoid curves, but uses a unified mathe-
matical form for activation and inhibition:

dxi

dt
= −Dixi + T̃i


1 +

2
π

arctan


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


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wherewji is positive if genej activates genei; wji is negative
if gene j is an inhibitor of genei; wji equals 0 ifj is not
a regulator ofi; and the absolute value ofwji controls the
sigmoidicity. T̃i is the basal transcription rate when genei’s
regulators are absent. The presence of activators and inhibitors
can at most double the transcription rate to2T̃i, or suppress
it to 0. Although not equivalent to equation (1), the proposed
model (2) is able to describe similar dynamic behaviors.

Starting from equation (2), we develop a new algorithm
to REconstruct Directed and SIgn Gene regulatory Networks
(REDSIGN) from steady state microarray gene expression
data, i.e. wild type, gene knockout experiments, etc. At steady
states, the right hand side of equation (2) equals 0,

−Dixik + T̃i


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 = 0 (3)

The subscriptk is the index of thek’th microarray experiment.
The summation runs over all the genes, wherewji = 0 if gene
j is not a regulator of genei. Equation (3) holds for all the
microarray experiments where the target genei is not directly
perturbed. From equation (3), it is easy to see that,

∑
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wjixjk = tan
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2

)
(4)

Denoteαi = πDi

2 eTi
. Due to the numerical range ofarctan,

we have0 ≤ αi ≤ π
xik

. Since equation (3) holds for all the

experiments where genei is not directly perturbed, we have
∑

j
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(
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2

)
(5)

0 ≤ αi ≤ π

maxk(xik)
(6)

wherek belongs to the set of experiments where genei is not
directly perturbed.

Given the value ofαi, the regulators of genei can be
estimated by the following minimizing problem,
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This is essentially a least squares problem. When the total
number of genes is large, additional L1- or L2- regularization
terms can be added to induce sparsity and improve the robust-
ness of least squares estimation [8]. Sinceαi is unknown, we
can perform a grid search, estimating thewji’s and the least
squares error for each possible value ofαi. We then pick the
αi value that leads to the minimum least squares error, and
use it to estimate the regulators of genei.

In summary, given steady state expression data, REDSIGN
reconstructs a gene network using the following procedure:

1. For each genei, estimate its regulators using steps 2-4.
2. Create a grid forαi in its numerical range (6)

αi = π
maxk(xik)

s
100 , s = 1, 2, ..., 99

3. For each value ofαi, solve the least squares problem in
(7) and compute the least squares error.

4. Set αi to be the value that results in the smallest least
squares error, and solve equation (7) again. The resulting
wji describes how genei is regulated by other genes.

The estimatedwji can be arranged in a matrix form[wji],
where the(j, i) element describes the whether genej regulates
gene i, and if yes, whether the regulatory interaction is an
activation or an inhibition. The absolute value ofwji indicates
the estimated strength of the regulatory interaction.

III. R ESULTS

A. Simulation settings and performance metric

Simulations were performed to compare the reconstruc-
tion accuracy of REDSIGN with relevance network (RelNet)
[2] and Bayesian regression (BayesReg) [3]. Following the
simulation settings in [3; 6]: gene networks with 30 nodes
were simulated; the in-degree distribution of each node was
compact and the out-degree distribution was scale-free; no
self-regulation was simulated; the type of each regulatory
interaction, activation or inhibition, was randomly chosen with
equal probability. Gene expression data were simulated using
equation (1). Experimentally derived values forDi and Ti

were obtained from [6].βi andn were set to be 0.5 and 1.5,
respectively. Multiplicative noise was simulated by log-normal
distributions.

The values of binding affinitiesKji are not available for
most genes in the literature. AlthoughKji’s are important
parameters that describe the strength of regulatory interactions,
few existing works studied the effect of these parameters.
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Fig. 2. Network reconstruction accuracy under different noise levels. Experiment noise is multiplicative, which follows log-normal distributions.

Therefore, we simulated data using different values ofKji,
to evaluate their impact on the reconstruction accuracy. Ac-
cording to equation (1), when the regulators are absent, the
basal steady state mRNA concentration of genej is βjTj/Dj .
In our simulation, we setKji = γ(βjTj/Dj), and variedγ
between 0.2 and 6. Whenγ equals 1, genej’s binding affinities
to its targets are the same as its basal mRNA concentration.
In this case, genej’s effect (Gji and Fji) on its targets is
approximately two-fold. Since the strength of a regulatory
interaction is inversely related to the binding affinity, small
γ leads strong regulatory interactions, while largeγ implies
weak regulatory interactions.

At each level of regulation strengthγ and each noise
level, 10 networks were simulated, each contained 30 genes
and in average 45 regulatory interactions. For each network,
equation (1) was used to simulate expression data for wild
type and knockout experiments for each gene. A knockout
experiment was simulated by holding the knocked-out gene’s
maximum transcription rateTi = 0 . Therefore, 31 microarray
experiments were simulated for each network.

The reconstruction accuracy is measured by area under
precision-recall curve (AUC). Denote true positivesNTP ,
false positivesNFP , and false negativesNFN . The precision
and recall are defined asp = NTP /(NTP + NFP ) and
r = NTP /(NTP + NFN ). For BayesReg and REDSIGN,
the reconstructed networks were obtained by thresholding
the absolute values of the regression coefficientswji. If wji

exceeded the threshold, it must satisfy two criteria to be a
true positive: genej regulated genei; and wji’s sign agreed
with the type of the regulatory interaction. For RelNet, the
reconstructed networks were obtained by thresholding the
mutual information matrix [9; 10]. Since RelNet does not
recover direction or interaction type, if its(j, i) entry exceeded
the threshold, this entry was considered as a true positive if
genesi and j shared a regulatory interaction. One particular
threshold produces a pair of precision and recall values,
which corresponds to one point on the precision-recall curve.
The precision-recall curves were generated by varying the
threshold. The AUCs were computed and used as performance
metric. The AUC of a perfect classifier equals 1. If a classifier
behaves randomly, its AUC is the ratio between number of true
positives and the sum of all true positives and true negatives,
which is around45/(30 ∗ (30− 1)) ≈ 0.05 in our simulation.

B. Effect of regulation strength on reconstruction accuracy

We applied RelNet, BayesReg and REDSIGN to reconstruct
networks from the simulated gene expression data. In Figure

2, we plot the average reconstruction accuracy as a function
of regulation strength. The vertical axis is the AUC, and the
horizontal axis is inversely related to interaction strength. From
the noise-free cases (σ = 0), we observed that REDSIGN
and BayesReg consistently outperformed RelNet. More im-
portantly, both REDSIGN and BayesReg were able to recover
the directions and signs of the reconstructed interactions.
Although these two methods showed similar performance,
REDSIGN ran significantly faster, because REDSIGN is based
on linear regression, while BayesReg is an iterative Bayesian
algorithm based on the relevance vector machine which has
high computational complexity [11].

From the simulations with noise, we observed an expected
trend that experiment noise was inversely related to the re-
construction accuracy. At noise levelσ = 0.01, BayesReg
outperformed REDSIGN. However, for higher noise levels,
the two methods showed similar performance. At noise level
σ = 0.05, when the regulation strengthγ = 1 ∼ 3,
REDSIGN and BayesReg outperformed the RelNet. When
the regulation strength was either quite strong or quite weak,
RelNet performed better.

An interesting observation is that, with the presence of
noise, asγ increased and the regulation strength decreased,
the reconstruction accuracy of both REDSIGN and BayesReg
first increased and then decreased. The intuition is that, when
γ is small and the regulatory interactions are strong, change
of a regulator strongly affects not only its direct target, but
also the downstream genes that its targets regulate. Strong
regulatory interactions create high correlations between a
regulator, its direct and indirect targets. In this case, it is
difficult to distinguish indirect and direct targets. When the
strength of regulatory interactions are less strong, the effect
of a regulator’s change does not propagate far, resulting in
fewer highly correlated indirect targets, and thus, less potential
false positives. On the other extreme, when the regulatory
interactions are weak, the correlations between regulators
and their targets may be overwhelmed by experiment noise,
resulting in poor reconstruction accuracy.

Figure 2 suggests that, it is desirable thatγ = 1.5 ∼ 2.
Given a biological network, although we can not directly
control the binding affinitiesKji to tuneγ into the desirable
range, we can apply general protein synthesis inhibitor, such
as Cycloheximide, to repress the synthesis of transcription
factor proteins. Since in reality it is the transcription factor
proteins of the regulators that modulate the expression of
their target genes, this intervention effectively weakens the
strength of all edges in the network. We hypothesize that in
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isolated
nodes σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05

0 0.8955 0.7828 0.6288 0.4373 0.3541
15 0.8252 0.7181 0.5927 0.4332 0.3452
30 0.8097 0.6997 0.5790 0.4486 0.3338

TABLE I
AVERAGE AUC FOR NETWORKS WITH DIFFERENT NUMBER OF ISOLATED

NODES AND NOISE LEVEL.

gene knockout experiments, repressing protein synthesis to
a certain extent will lead to better data for more accurate
network reconstruction.

C. Robustness with respect to isolated nodes

We also evaluated the robustness with respect to isolated
nodes. The simulated 30-node networks withγ = 1.5 from
the previous subsection were used. We added 15 or 30 isolated
nodes, re-simulated gene expression data with different noise
levelsσ, and reported the average AUCs of REDSIGN in Table
I. The additional isolated nodes reduced the reconstruction per-
formance by less than 10%. Although the additional isolated
nodes doubled the size of the network, they did not alter the
dynamics and complexity of the data, and thus did not have
significant impact on the reconstruction performance.

IV. CONCLUSION

We propose a new computational model for gene regulatory
networks, which uses the same mathematical form to approxi-
mate the Hill kinetics of activation and inhibition relationships.
Based on this new model, we developed the REDSIGN
algorithm, which reconstructs gene networks from steady state
expression data of wild-type and gene knockout experiments.
Simulation results indicated a novel biological hypothesis that
in gene knockout experiments, repressing protein synthesis
to a certain extent will generate better data, based on which
the underlying network can be more accurately reconstructed.
This is a hypothesis to be experimentally tested. Another
possible extension of this work is to include an additional set
of differential equations which explicitly model the dynamics
of protein synthesis and degradation. Although including the
protein activities will double the size of the problem, such an
extension more accurately reflects the biology of transcription
regulation, and has the potential of reconstructing networks
from time series data.
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