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Abstract

Flow cytometry provides multi-dimensional data at the single-cell level. Such data contain information about the cellular
heterogeneity of bulk samples, making it possible to correlate single-cell features with phenotypic properties of bulk tissues.
Predicting phenotypes from single-cell measurements is a difficult challenge that has not been extensively studied. The 6th
Dialogue for Reverse Engineering Assessments and Methods (DREAM6) invited the research community to develop
solutions to a computational challenge: classifying acute myeloid leukemia (AML) positive patients and healthy donors
using flow cytometry data. DREAM6 provided flow cytometry data for 359 normal and AML samples, and the class labels for
half of the samples. Researchers were asked to predict the class labels of the remaining half. This paper describes one
solution that was constructed by combining three algorithms: spanning-tree progression analysis of density-normalized
events (SPADE), earth mover’s distance, and a nearest-neighbor classifier called Relief. This solution was among the top-
performing methods that achieved 100% prediction accuracy.
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Introduction

Flow cytometry technology provides multi-parametric single-cell

measurements of a heterogeneous population of cells [1]. The flow

cytometry data for one biological sample is usually in the form of

a tall thin matrix, where each row corresponds to an individual cell

and each column corresponds to one protein marker. Each

element in the data matrix is the expression of a protein marker

on/inside an individual cell. Such single-cell data contain in-

formation about the cellular heterogeneity underlying the mea-

sured population (i.e., how many cell types there are, and the

percentages of cells belonging to each cell type). If such data for

multiple samples are available, the relationship between the

cellular heterogeneity and the phenotypic properties of the

samples can be evaluated.

The relationship between single-cell characteristics and pheno-

typic properties has been discussed in the literature. For example,

flow cytometry was used to derive the percentages of smudge cells

and lymphocytes in blood samples, which were shown to be

predictive of prognosis for patients with chronic lymphocytic

leukemia [2]. CD33 expression derived from flow cytometry

predicted clinical outcome in patients with acute myeloid leukemia

(AML) who were treated with gemtuzumab ozogamicin mono-

therapy [3]. Flow cytometry was used to profile follicular

lymphoma tumors and identify a subpopulation of lymphoma

cells with impaired B-cell antigen receptor signaling, whose

abundance was negatively correlated with survival [4]. These

studies demonstrate possible correlations between cellular compo-

sitions and clinical outcomes, such as survival and drug response.

To correlate single-cell data and phenotypic properties, in

general, two computational components are needed: (1) identify

cell types or subpopulations of cells, and (2) infer phenotypic

properties from summary statistics of the subpopulations. For

subpopulation identification, the most widely used approach for

analyzing flow cytometry data is gating, which is a subjective and

labor-intensive method that relies on user-defined sequences of

nested biaxial plots [5,6]. To reduce the subjectivity, a number of

automated clustering algorithms have been proposed, such as K-

means [7,8], mixture models, [9–12], density-based clustering

[13,14], spectral analysis [15], and tree-based analysis [16,17].

Once the subpopulations are defined, summary statistics can be

easily computed (i.e., percentages and median marker expres-

sions). For the purpose of inferring phenotypic properties, many

classification algorithms in the machine learning literature can be

applied. Examples include support vector machine [18], neural

network [19], random forest [20], model-based classifiers [21], and

nearest neighbor approaches [22,23]. The combination of sub-

population identification and classification algorithms can produce

many analysis pipelines, each of which may have its own strengths

and weaknesses.

The challenges put forth by DREAM, the acronym for

Dialogue for Reverse Engineering Assessments and Methods,

provide objective and unbiased platforms for evaluating compu-

tational methods in systems biology [24–27]. Started in 2007, the

DREAM project designs a set of computational challenges each

year, invites scientists to solve them, and evaluates the solutions

that are submitted. The challenges have included: transcription

factor binding prediction, network inference, missing data
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prediction, sequence motif recognition, parameter estimation,

and gene expression prediction. The DREAM6 in 2011 included

one challenge on AML prediction using single-cell flow

cytometry data. Operating in parallel to DREAM, another

initiative FlowCAP (Flow Cytometry: Critical Assessment of

Population Identification Methods) focuses on computational

methods for flow cytometry analysis. The AML prediction

challenge was shared by DREAM6 and FlowCAP2.

This manuscript discusses my participation in the AML

prediction challenge. The challenge provided flow cytometry data

for 359 subjects and the normal/AML status of 179 subjects.

Researchers were asked to predict the normal/AML status of the

remaining 180 subjects. In response to this challenge, I submitted

one solution and it achieved 100% prediction accuracy. The main

components of the solution were: spanning-tree progression

analysis of density-normalized events (SPADE) [16], earth mover’s

distance (EMD) [28] and a nearest-neighbor classification

approach called Relief [22]. Detailed descriptions of the challenge

and my solution are provided hereafter.

Results

Description of the AML Prediction Challenge and Data
The AML prediction challenge included a total of 359 samples

from 316 healthy donors and 43 AML positive patients. Each

sample was subdivided into 8 aliquots/tubes, stained for different

marker combinations, and assayed by flow cytometry. Tube 1 was

an isotype control and tube 8 was unstained. Table 1 shows the

marker combinations, five protein markers per tube. In addition to

the protein markers, the data contained measurements for forward

scatter (FSC) and side scatter (SSC) for each cell, which reflected

cell size and granularity. Therefore, the data of each tube was

a matrix containing 7 columns. The total number of cells (rows)

varied across the different tubes and samples, ranging from 8000

to 50000.

The information for 179 samples regarding whether they were

healthy or AML positive was provided as the training set. The

challenge was to predict the normal/AML status of the remaining

180 testing samples. It is worth noting that since the total numbers

of normal and AML samples were provided, participants were

able to easily figure out the numbers of normal and AML samples

in the testing samples, which were 160 and 20, respectively.

As shown in Table 1, only one protein marker was shared by

different tubes. Since the number of overlapping markers in the

different tubes was small (CD45, FSC and SSC), I decided to

analyze the 8 tubes separately, as if there were 8 different

prediction problems. In the following subsections, tube 2 will be

used to illustrate the analysis and results, because it is the first tube

that is not a control tube.

Data Quality Check and Preprocessing
The flow cytometry data of each tube for each sample were

provided in a comma-separated values (CSV) file. The total

number of files was 359*8= 2872. Data in the CSV files were

compensated and transformed [29] before being released to the

participants. FSC was transformed in linear scale, while SSC and

the five protein markers were transformed in logarithmic scale.

As a quality check, histograms were visualized for each marker

in each file. For example, Figure 1 shows the histograms derived

from tube 2. Each plot contains 359 curves, which are the

distributions of the transformed intensities for one marker in the

2nd tube of the 359 samples. The curves in each plot formed

clusters of peaks, meaning that the distributions of the intensities of

the markers in tube 2 were relatively well aligned across different

samples. Similar patterns were observed in the data from the other

tubes (see information S1). Such observations indicated that there

was no significant mean shift or variance change among the

samples, and thus, data from different samples were directly

comparable without the need for normalizing any baseline

differences among samples.

From Figure 1, it can be observed that all markers in the

logarithmic scale shared a similar standard deviation (*0:1);
whereas the standard deviation of FSC was large, because of its

linear scale. To ensure that the subsequent analysis was not

dominated by the FSC channel, linear transformation was used to

shift the mean of the FSC data to 0 and scale the standard

deviation to 0.1. This was performed separately for each data file.

SPADE
SPADE is the acronym for spanning-tree progression analysis of

density-normalized events [16]. It is a computational approach for

flow cytometry analysis. SPADE views a flow cytometry dataset as

a point cloud of cells and derives a tree structure to represent the

geometry of the cloud, which reflects the cellular heterogeneity

underlying the data. To achieve this, SPADE contains four

computational components: density-dependent downsampling,

agglomerative clustering, minimum-spanning tree construction,

and upsampling. As mentioned above, data for different tubes

were analyzed separately. In this subsection, tube 2 is used to

illustrate how SPADE was applied for the AML prediction

challenge.

To jointly analyze the tube 2 data for all the samples with

SPADE, my strategy was to first perform density-dependent

downsampling on the tube 2 data for the individual samples

separately, then pool the downsampled data for clustering and

minimum-spanning tree construction, and finally apply upsam-

pling to calculate the distribution of cells with respect to the tree

for each sample.

Density-dependent downsampling is a process that removes cells.

This process removes cells in the abundant cell types with high

probability while keeping most cells in the rare cell types. Down-

sampling was performed on individual samples because the total

numbers of cells in different samples were different. To ensure that

individual samples contributed equally to the collective when the

downsampled data for all samples were pooled, the downsampling

parameters of SPADE were varied such that the same number of

cells (i.e., 2000 in this analysis) survived the downsampling process

for each sample.

The downsampled data for all samples were pooled, forming

a meta-cloud that represented the union of all phenotypes present

Table 1. The fluorophore-conjugated antibodies contained in
each of the 8 tubes.

FL1 FL2 FL3 FL4 FL5

Tube 1 IgG1-FITC IgG1-PE CD45-ECD IgG1-PC5 IgG1-PC7

Tube 2 Kappa-FITC Lambda-PE CD45-ECD CD19-PC5 CD20-PC7

Tube 3 CD7-FITC CD4-PE CD45-ECD CD8-PC5 CD2-PC7

Tube 4 CD15-FITC CD13-PE CD45-ECD CD16-PC5 CD56-PC7

Tube 5 CD14-FITC CD11c-PE CD45-ECD CD64-PC5 CD33-PC7

Tube 6 HLA-DR-FITC CD117-PE CD45-ECD CD34-PC5 CD38-PC7

Tube 7 CD5-FITC CD19-PE CD45-ECD CD3-PC5 CD10-PC7

Tube 8 NonSpecific NonSpecific NonSpecific NonSpecific NonSpecific

doi:10.1371/journal.pone.0037038.t001
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in at least one sample. Agglomerative clustering was applied to

divide the meta-cloud into small pieces (i.e. 150 clusters).

Minimum-spanning tree construction was used to derive a tree

structure that connected the clusters with minimum total edge

length. Each tree node represented one cluster of cells that were

similar to each other, which occupied one small region of the

meta-cloud. The topology of the tree approximated the skeleton of

the meta-cloud. Figure 2 shows multiple versions of the SPADE

tree. The only difference among those versions is the coloring. The

nodes of each tree were colored by the median intensity of one

marker measured in tube 2.

The topology, layout and coloring of the tree were automat-

ically generated by SPADE. Annotation boundaries in Figure 2

were manually drawn to partition the tree into subgraphs, such

that the color pattern within one boundary was relatively

homogeneous in all the colored trees. For example, nodes in the

boundary that covered the upper-right branch were negative for

all five protein markers; nodes within the adjacent annotation

boundary was positive for CD45 and negative for the other four

protein markers. Each annotation boundary outlined one branch/

subgraph of the tree, which might correspond to a subpopulation

of cells with a distinct phenotype. Since tube 2 measured B-cell

markers, a few branches of the SPADE tree can be interpreted as

B-cell subtypes. The two branches in the upper-left corner were

mature B cells because they were positive for both CD19 and

CD20. This was further confirmed by the mutually exclusive

expression of kappa and lambda in those two branches, which has

been observed in mature B cells [30]. The bottom branch was

CD19+ CD20- Kappa- Lambda-, which was likely to be immature

B cells. The five subgraphs near the center of the tree were CD45+
CD19- CD20-, with different expressions of kappa and lambda.

The cell types of nodes in those subgraphs were not clear

according to the markers in tube 2. The manually derived

annotaion boundaries were useful for understanding the corre-

spondence between the tree and the underlying cell types.

However, for the purpose of predicting the normal/AML

classification, such annotations were not necessary.

After the SPADE tree was derived from the pooled down-

sampled data, upsampling was performed to map each cell in the

original dataset to the node to which it was most similar. Through

Figure 1. Distributions of marker intensities in data of tube 2. Each panel contains 359 curves, and each curve shows the distributions of the
intensities of one marker in tube 2 for one of the 359 samples.
doi:10.1371/journal.pone.0037038.g001
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this process, for each sample, every cell in the original dataset was

assigned to one tree node, which enabled the calculation of the

percentage of cells that belonged to each tree node. The

percentage values could also be used to color the SPADE tree.

Figure 3 shows two examples. Each plot highlighted the parts of

the meta-cloud that were occupied by cells in one sample. The

following subsection discusses how the distribution of cells with

respect to the tree can be used for classification.

Classification Based on One Tube
The above SPADE analysis derived 359 distributions: how cells

in tube 2 of each sample were distributed across the tree. Such

a distribution is a characteristic of each sample that can be used for

classification. One possible way to address the classification

challenge is to ask: whether the cell percentage of any subtree

correlates with the normal/AML phenotype. Since each subtree

can be considered as one cell type or a collection of a few similar

cell types, this analysis identifies cell types whose abundance

predicts the normal/AML phenotype. For the tree shown in

Figure 2, the total number of possible subtrees is greater than

24000. Therefore, this analysis is subject to multiple hypothesis

testing.

Instead of searching for subtrees that predict the phenotype, an

alternative is to ask whether the entire distribution is predictive.

Following this idea, my solution for the AML prediction challenge

was to combine two algorithms: the earth mover’s distance (EMD)

[28] and a nearest-neighbor classifier named Relief [22].

EMD is a distance metric that measures the dissimilarity

between two probability distributions with respect to a structured

domain [28], which is the SPADE tree in this analysis. If one unit

of effort is needed to move one cell from a tree node to its adjacent

neighbor, the EMD between two distributions in Figure 3 is the

minimum effort needed to make one distribution the same as the

other by moving cells. It can be calculated by solving a constraint

linear programming problem. Based on the data and the tree

derived from tube 2, the pairwise EMDs of all training samples

were calculated and shown in the heatmap in Figure 4. The order

of the samples in the heatmap was organized by hierarchical

clustering, so that similarity patterns among the samples was

visible along the diagonal line [31]. The normal and AML samples

were not perfectly separated according to the EMD values.

However, the AML samples formed more than two clusters in the

bottom-right corner of Figure 4, indicating that the AML samples

can be further divided into a few subtypes according to the

markers measured in tube 2.

Relief is a nearest neighbor based classifier. The Relief score for

one testing sample is defined by the distance from the testing

sample to the nearest normal sample minus the distance from the

test sample to the nearest AML sample. If a testing sample is

normal, the distance between it and the nearest normal sample is

likely to be small, and the distance between it and the nearest

AML sample is likely to be large. Thus, the score for a normal

testing sample is likely to be negative. Following similar logic, the

score for an AML sample is likely to be positive. Therefore, the

Figure 2. SPADE tree derived from tube 2 data of all 359 samples. Each tree is colored by the expression of one protein marker in tube 2:
kappa, lambda, CD45, CD19 and CD20. Manually derived annotation boundaries are shown by the gray curves that partition the tree. These
boundaries facilitate the interpretation of which phenotype is represented by different parts of the tree.
doi:10.1371/journal.pone.0037038.g002
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phenotype of a testing sample was predicted by comparing its

score against 0. Using the EMDs derived from the data of tube 2,

the scores for the 180 testing samples were computed and shown in

Figure 5, where the samples were ordered by sorting their scores.

Based on the data of tube 2, this approach predicted that 18

testing samples were AML. The Relief scores of three samples (one

predicted as AML and two predicted as normal) were quite close

to the threshold 0, indicating that the predictions for those three

samples were of low confidence.

Classification Based on All Tubes
The EMD and Relief analysis for tube 2 was performed on all

the individual tubes (results available in information S2). Each

tube provided a set of scores for the 180 testing samples. The 8 sets

of scores are shown in Figure 6(a), in which the testing samples

were ordered by sorting the sum of the scores from all 8 tubes. The

8 sets of scores appeared to be highly correlated, suggesting that

different tubes produced similar prediction results. The sum of the

8 sets of scores is shown in Figure 6(b), where the samples were in

the same order as Figure 6(a). The final prediction was made by

comparing the summed scores against 0. The summed scores of 20

testing samples were positive and were predicted to be AML. The

clear gap around 0 indicates that the prediction was of high

confidence. This prediction was submitted to DREAM6 before the

gold standard was released. After the DREAM6 challenge ended, I

was notified that the prediction result was 100% accurate.

Discussion

This paper describes a novel framework for predicting

phenotypic properties from single-cell data. The framework

contains three main components: SPADE, EMD and Relief.

The role of SPADE is to perform feature extraction. SPADE

clusters cells and constructs a tree that captures the relationship

among the cell clusters. Such a tree representation can be used to

summarize the single-cell data for each sample into a distribution

of cells with respect to the tree. The cell distribution is one feature

extracted from the data. EMD is a distance metric suitable for

comparing the cell distributions in different samples, while taking

the tree into account. The EMD between all pairs of samples

forms a kernel matrix that can be fed into any classifiers in the

machine learning literature. The classifier used in this paper is

Relief, which is a nearest neighbor based approach.

Using the same framework, one can construct other pipelines

for predicting phenotypes from single-cell data. For example, the

SPADE feature extraction component can be replaced by manual

gating [5,6] or clustering algorithms [7–15]; the EMD metric can

be replaced by the Euclidean distance; and the Relief classifier can

be replaced by support vector machine [18] or other classifiers.

Some of those possible pipelines may achieve similar prediction

performance as that described in this paper. For example, a few

other participating teams in the DREAM6 AML prediction

challenge also achieved 100% accuracy. The major difference

between those possible pipelines and that in this paper is the

topology of the SPADE tree, which aims to capture the

relationship among subpopulations of cells.

The proposed framework handles the individual tubes sepa-

rately. When the results from the individual tubes were combined

to form a final prediction, the different tubes were considered

equally. The reason was that the predictions from the individual

tubes were highly similar, as shown in Figure 6(a). Details of the

prediction performance based on the individual tubes are available

in information S3. Even the isotype and unstained controls (tubes

1 and 8) were able to produce predictions that had reasonably high

accuracy. If the final scores were defined as the sum of tubes 2–7,

the prediction result would have been identical to that based on all

tubes. Combining the different tubes with equal weight may not be

optimal. However, such an approach is sufficient for the AML

prediction dataset.

Figure 3. SPADE tree derived from tube 2, colored by the distribution of cells in two individual samples. Subject 1 is a healthy donor
and subject 5 is a patient with AML.
doi:10.1371/journal.pone.0037038.g003
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Methods

SPADE
Spanning-tree progression analysis of density-normalized events

(SPADE) contains four computational components: density-de-

pendent downsampling, agglomerative clustering, minimum-

spanning tree construction, and upsampling. Details are available

in Qiu et al [16]. To make this paper more self-contained, brief

descriptions of the algorithm and parameter settings are provided.

The downsampling component throws away cells in a density-

dependent manner. SPADE keeps cells using the following

probability:

prob(keep celli)~

0, if LDiƒOD

1, if ODvLDiƒTD
TD
LDi

, if LDiwTD

8><
>:

where LDi is the local density for cell i, which is the number of

cells within its neighborhood. The neighborhood size is 5 times of

the median L1 distance from a randomly chosen cell to its nearest

neighbor. OD is the outlier density, defined as the 1st percentile of

the local densities of all cells. TD is the target density, chosen such

that 2000 cells will survive the downsampling process. This was

performed separately for each tube of each sample.

After downsampling, cells in the same tube of all 359 samples

were pooled, resulting in a set of *359 � 2000 cells. Since the

number of cells after pooling was too large for the subsequent

clustering step, the pooled downsampled data was further

uniformly downsampled to 50000 cells, a size that was within

the capacity of the clustering component of SPADE.

The clustering component of SPADE is a variation of the

agglomerative hierarchical clustering algorithm. SPADE clustering

encourages different clusters to have similar sizes, so that the

resulting clusters are relatively balanced compared to those

produced by standard hierarchical clustering. The stopping

criterion of the agglomerative process is a user-defined desired

number of clusters, which was set at 150.

After clustering, each cluster is represented by its median

expression of the measured markers, and the distance between

each pair of clusters is defined by the L1 distance. SPADE

constructs a minimum spanning tree that links the cell clusters with

minimum total edge length, using the Boruvka’s algorithm [32].

When visualizing the tree, a modification of the Fruchterman and

Reingold algorithm [16,33] is used to automatically determine

a layout. Such a layout faithfully reflects the topology of the tree.

Figure 4. Pairwise earth mover’s distance (EMD) among all training samples, derived from tube 2. The values of EMD range from 0 to 18,
as shown by the color bar. The bottom panel shows the class label of each training sample.
doi:10.1371/journal.pone.0037038.g004
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However, the edge length information of the tree is not encoded in

the visualization.

Finally, upsampling is performed to recover the information lost

during the downsampling process. For each cell in one tube of

each sample, SPADE identifies its nearest neighbor in the subset of

50000 cells used in clustering, and assigns it to the cluster that its

nearest neighbor belongs to. After upsampling, each cell in the

original dataset is assigned to one cluster/node. The median

marker expression and the cell count of each node can be

calculated based on the entire original dataset.

The SPADE analysis in this paper was performed using

SPADE2.0, an efficient Matlab implementation of the algorithm.

SPADE2.0 is about 15 times faster than the original prototype

released when SPADE was first published [16], and includes an

easy-to-use graphical user interface. SPADE2.0 is available at

http://odin.mdacc.tmc.edu/pqiu/software/SPADE2/index.html.

Earth Mover’s Distance
The earth mover’s distance (EMD) measures the distance

between two probability distributions [28]. In this work, EMD is

used to evaluate the distance between two cell distributions with

respect to a tree structure (see examples in Figure 3). Imagine the

cells in one node as the mass in one city, the tree edges as the

highways that connect different cities, and efforts are needed to

move mass from city to city along the highways. The EMD between

two distributions is the minimum amount of effort needed to make

one distribution the same as the other. Here, the cost formoving one

cell from a tree node to its adjacent neighbor is defined as one unit of

effort. The EMD between two cell distributions (P and Q) can be

obtained by a linear programming formulation:

C~min
fij

P
i,j

fijcij

s:t:

fij§0P
j

fij~P(i)

P
i

fij~Q(j)

8>>><
>>>:

To make P the same as Q, fij is the number of cells moved from

node i to node j, and cij is the number of hops in the shortest path

between the two nodes. The equality constraints ensure that the

total number of cells moved out of node i equals P(i), and the total

number of cells moved into node j equals Q(j). The solution to this

minimization problem is the EMD between the two distributions,

and can be obtained by the ‘‘linprog’’ function in Matlab or other

linear programming solvers. One possible extension of this

formulation is to include the edge length information in the cost

Figure 5. Relief score for each testing sample, derived from tube 2. To make predictions, scores should be compared with a threshold of 0. A
positive score means the testing sample is likely to be AML; whereas a negative score means normal.
doi:10.1371/journal.pone.0037038.g005
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matrix, defining cij as the total edge length of the shortest path

connecting the two nodes.
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