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Abstract

In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a
novel computational approach, called Sample Progression Discovery (SPD), to discover patterns of biological progression
underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an
unknown biological process (i.e., differentiation, development, cell cycle, disease progression), and that each sample
represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that
reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression.
We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological
process at different points along its progression, without providing SPD any information of the underlying process. When
applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples’ time order or
of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been
associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of
normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to
mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and
genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset,
SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel
tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray
dataset and, perhaps more importantly, the candidate genes that regulate that progression.
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Introduction

Biological processes of development, differentiation and aging are

increasingly being described by the temporal ordering of highly

orchestrated transcriptional programs [1]. When such processes are

analyzed with gene expression microarrays at specified time points, a

variety of computational methods are available to identify which

genes vary and how they vary across part or all the time points

[2,3,4,5,6]. However, when microarray samples of a biological

process are available but their ordering is not known, fewer methods

are available to recover the correct ordering, especially when the

underlying process contains branchpoints, as occurs in the differen-

tiation from hematopoietic stem cells to myeloid and lymphoid

lineages. We present a novel method, referred to as Sample

Progression Discovery (SPD), to discover the progression among

microarray samples, even if the progression contains branchpoints. In

addition, SPD simultaneously identifies genes that define the

progression. SPD can be used to generate biological hypotheses

about a progressive relationship among samples, and the genes that

serve as key candidate regulators of the underlying process.

Recovery of an ordering among unordered objects has been

studied in a variety of contexts. In computer vision, images taken

from random viewpoints and angles were ordered for the purpose

of multi-view matching [7], where the ordering was based on

predefined features that are invariant to different viewpoints. In

genetics, spanning trees were applied to reconstruct genetic linkage

maps [8], which was an ordering of genetic markers. Using gene

expression data of a small set of preselected genes, phylogenetic

trees were constructed to study cancer progression among

microarray cancer samples [9,10]. Microarray samples were also

ordered by a traveling salesman path from combinatorial

optimization theory, but feature selection was not discussed

[11,12]. Although these methods proved useful in the recovery

of an ordering from unordered objects, their direct applications

cannot address the challenges of extracting progression and

differentiation hierarchy from microarray gene expression data.

Algorithms in [7,11,12] assume linear ordering of unordered

objects, and therefore are not able to reveal potential branch-

points. Furthermore, most existing methods order samples based

on carefully designed or preselected features. However, in

microarray gene expression data, meaningful gene features are

usually not known a priori. One important aspect of SPD is its

feature selection ability. Assuming the underlying progression can

be reflected by gradual expression changes of subsets of genes,
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SPD selects genes whose gradual changes support a common

progression, and hypothesizes that the common progression is

biologically meaningful.

The SPD framework, as depicted in Figure 1, discovers

biological progression from gene expression microarray data using

four steps: (1) cluster genes into modules of co-expressed genes, (2)

construct minimum spanning tree (MST) for each module, (3)

select modules that supports common MSTs, and (4) reconstruct

an overall MST based on all the genes of all the selected modules.

Gene clustering is needed to reduce the number of gene expression

patterns to be tested. We introduce an iterative consensus k-means

algorithm to derive coherent gene modules, where genes within

each module are highly co-expressed. For each gene module, a

minimum spanning tree (MST) is constructed [13], where the

nodes of the MST are the microarray samples and the edges are

weighted by the distance between samples’ gene expression

profiles. Because a MST connects samples using the minimum

number of edges and minimum total edge weights, it tends to

connect samples that are more similar to each other. Therefore,

we use the MST to describe the progression among the samples,

defined by the gradual change of the corresponding gene module.

The progression is not necessarily linear, and can contain

branching points.

SPD then performs feature selection by evaluating the statistical

concordance between each gene module and each MST. We

Author Summary

We present a novel computational approach, Sample
Progression Discovery (SPD), to discover biological pro-
gression underlying a microarray dataset. In contrast to the
majority of microarray data analysis methods which
identify differences between sample groups (normal vs.
cancer, treated vs. control), SPD aims to identify an
underlying progression among individual samples, both
within and across sample groups. We validated SPD’s
ability to discover biological progression using datasets of
cell cycle, B-cell differentiation, and mouse embryonic
stem cell differentiation. We view SPD as a hypothesis
generation tool when applied to datasets where the
progression is unclear. For example, when applied to a
microarray dataset of cancer samples, SPD assumes that
the cancer samples collected from individual patients
represent different stages during an intrinsic progression
underlying cancer development. The inferred relationship
among the samples may therefore indicate a trajectory or
hierarchy of cancer progression, which serves as a
hypothesis to be tested. SPD is not limited to microarray
data analysis, and can be applied to a variety of high-
dimensional datasets. We implemented SPD using MA-
TLAB graphical user interface, which is available at http://
icbp.stanford.edu/software/SPD/.

Figure 1. Sample Progression Discovery (SPD) framework.
doi:10.1371/journal.pcbi.1001123.g001

Sample Progression Discovery (SPD)
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define a measure of ‘‘progression similarity’’ between two modules

as the number of MSTs that are concordant with both of the two

modules. If two modules are concordant with the same MST,

these two modules share progression similarity, because their

gradual changes support a common progression order among the

microarray samples. A noteworthy point here is that modules that

are concordant with the same MST are not necessarily correlated

with each other; hence SPD is able to identify similarities that may

be missed by correlation or regression-based analyses [14,15,16]. If

there exist multiple modules that are concordant with a common

set of MSTs, these modules support a common progression, which

is likely to be biologically meaningful. SPD selects modules that

share progression similarity, and constructs an overall MST based

on all the genes within the selected modules. The overall MST and

the selected modules serve as the basis for generating hypotheses of

the underlying biological process and its regulators.

To demonstrate the potential of SPD to reveal biological

processes underlying microarray samples, we applied it to a variety

of microarray datasets, each of which was associated with a known

biological progression. In each case, the known progression was

hidden from SPD, and was used to validate the progression

discovered by SPD. First, SPD was applied to a time series

microarray dataset of the cell cycle. SPD successfully recovered the

correct time order of the samples and identified many genes that

have been associated with the cell cycle. When applied to B-cell

differentiation data, SPD recovered the correct order of different

stages of normal B-cell differentiation, and identified the linkage

between preB-ALL tumors and their preB cell of origin. SPD was

applied to a mouse embryonic stem cell differentiation dataset,

where SPD uncovered a landscape of ESC differentiation into

various lineages and genes that represent both generic and lineage

specific processes. When applied to a prostate cancer microarray

dataset, SPD identified gene modules that reflect a progression

consistent with disease stages. All of these applications of SPD are

presented in the following sections and, collectively, show that

SPD may be best viewed as a novel tool for synthesizing biological

hypotheses, because it provides a likely biological progression

across microarray samples and, perhaps more importantly, the

candidate genes that regulate the progression. We implemented

SPD using MATLAB graphical user interface. Our software is

available at http://icbp.stanford.edu/software/SPD/.

Results

SPD recovers temporal information of cell cycle time
series data

Microarray time series data of the cell cycle were used to

evaluate the performance of SPD. Information on the temporal

sample order and cell-cycle regulated genes were not provided to

SPD. We hypothesized that SPD would recover the underlying

biological progression (in this case, the cell cycle) and identify the

genes associated with that progression. Five cell cycle time series

gene expression datasets in [17] were independently analyzed by

SPD. Here we present the SPD analysis on the series with the

largest number of samples. SPD analysis of the other time series

can be found in Supplement Text S1.

The input of SPD was a gene expression data matrix of 3196

high variance genes across 17 unordered samples from only one

cell cycle. The SPD analysis was deliberately limited to samples

in one cell cycle to avoid the possibility that SPD would order the

samples using the cyclic behavior of cell-cycle regulated genes

that can be easily observed across multiple cell cycles. SPD

clustered the 3196 high variance genes into 154 modules of

co-expressed genes, using an iterative consensus k-means approach

(see Methods). One MST was constructed for each module. Each

MST represented a possible progression order of the samples

based on the expression of its corresponding module. Then, a

progression similarity matrix was constructed to quantify the

similarity between pairs of modules. The (u,v) element of the

progression similarity matrix was defined as the number of MSTs

concordant with both modules u and v. (see Methods). The

progression similarity matrix is shown in Figure 2(a), and a

magnified portion is shown in Figure 2(b) to highlight nine

modules (3, 10, 17, 24, 4, 30, 6, 5 and 20) that are regarded as

similar in terms of progression. In the last step of SPD, the nine

modules with the highest progression similarity were combined to

construct an overall MST. The overall MST was visualized using

high-dimensional embedding, shown in Figure 2(c), and revealed a

near perfect restoration of the sample order. Interestingly, when

we examined the MSTs constructed from each of the nine

modules, we did not recover the correct order because we were

essentially projecting the progression into a lower dimensional

space. To demonstrate the value of the overall MST versus the

individual-module MSTs for restoring the sample order, we

applied a distance metric called topological overlap measure

(TOM) [18] to evaluate the distance between the MSTs and the

true sample order. Table 1 shows that the overall MST based on

combining the nine modules (the first row) produced a more

accurate sample order than the MSTs derived from the individual

modules.

Next, we compared SPD to the commonly used hierarchical

clustering analysis of the dataset described above. After all, a MST

can be regarded as a hierarchical clustering tree with single linkage

[19]. The main difference between hierarchical clustering and the

SPD framework is that SPD selects gene modules that share

progression similarity, and reconstructs an overall MST based on

the selected modules. To illustrate the significance of SPD’s feature

selection ability, we performed single linkage hierarchical

clustering based on all the 3196 genes, which is equivalent to

constructing a MST based on all these genes. The resulting

dendrogram did not recover the correct sample order, as shown in

Figure 2(d). Moreover, the TOM distance between the hierarchi-

cal clustering tree and the true sample order was much larger than

that from SPD, as shown in Table 1 (last row). This analysis

demonstrates the importance of SPD’s feature selection ability.

To evaluate the robustness of SPD, we performed bootstrap

analysis on the cell cycle microarray dataset. In each of the 100

bootstrap iterations, 90% of the 3196 genes were randomly selected.

SPD was applied to each bootstrapped dataset separately. In each

bootstrapped dataset, the clustering step might generate different

gene modules that lead to different progression-related modules and

a different overall MST. However, the overall MSTs were

consistent across the bootstrapped datasets. The TOM distance

was used to evaluate the distance between the 100 SPD results and

the true sample order. The mean TOM distance was 5:36+3:37.

The standard deviation of the TOM distance appeared to be

comparable to the mean due to the statistical properties of TOM.

To evaluate the statistical significance of this result, we performed

random permutation analysis. We generated 1000 random MSTs,

and computed the TOM distance between random MSTs and the

true sample order. The mean of the random TOM distance was

59+8, which is substantially larger than the TOM distances

obtained in the bootstrap analysis, indicating the robustness of SPD.

In addition, we examined the diameters of the random MSTs,

where the diameter is defined as the number of edges in the shortest

path between the most distantly separated pair of nodes. The mean

diameter of a random 17-node MST was 7:7+1:4. The diameter of

the SPD result in Figure 2(c) was 15. The probability of obtaining

Sample Progression Discovery (SPD)
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such a large diameter by chance was low, which implied that the

SPD result was statistically significant.

The mean expression profiles of the nine modules are shown in

Figure 2(e). Some of these modules are uncorrelated (i.e., modules

10 and 30 have a correlation coefficient of 20.06), but SPD

identified them as similar in terms of progression. Figure 2(f) shows

the mean expression profiles of the nine modules across all three

cell cycles that were provided in the original dataset. Here, we can

observe that some of the identified modules are cyclic. Gene sets in

the Molecular Signatures Database (MSigDB) [20] were used to

Figure 2. SPD applied to a cell cycle gene expression dataset. (a) Based on an expression matrix of 3196 genes for 17 unordered samples
from one cell cycle, SPD derived 154 modules and a progression similarity matrix between them. (b) Zoomed-in view of the progression similarity
matrix highlights nine modules that are similar in terms of progression. (c) SPD constructed an overall MST to describe the common progression
supported by the nine modules, showing a near perfect reconstruction of the correct time order. (d) Hierarchical clustering analysis did not recover
the correct time order. In (c) and (d), Samples were color-coded according to the time points (t, hours), when the samples were taken. Blue
corresponds to earlier time points; red corresponds to later time points. (e) The average expressions of the nine modules across the 17 time points
show that, some of the nine modules were uncorrelated, i.e., modules 10 and 30, but SPD identified them as similar in terms of progression. (f) The
mean expressions of the nine modules across all three cell cycles. The number in the parentheses above each plot is the number of genes in the
corresponding module.
doi:10.1371/journal.pcbi.1001123.g002

Sample Progression Discovery (SPD)
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annotate the identified gene modules (see Supplement Text S1). As

expected, these modules included many genes that have been

associated previously with the cell cycle. For example, module 10

was highly enriched (p*10{7, hypergeometric test for gene set

enrichment) for genes that are targets of the E2F cell cycle

transcription factor family. A likely explanation for the presence of

the acyclic modules is that they represent the experimental

perturbation that initially synchronized the cells. In the cell cycle

microarray experiments, the measured population of cells were

first synchronized, and then released. This initializing synchroni-

zation condition is a cellular perturbation that may take several

cell cycles to decay away.

SPD recovers stages of B-cell differentiation
We applied SPD to a B-cell differentiation dataset [21], in

which 9365 genes were measured for 44 samples across 5 normal

differentiation stages and 1 malignant stage: 7 hematopoietic stem

cells (HSC), 7 common lymphoid progenitors (CLP), 7 proB cells,

7 preB cells, 7 Immature B cells (IM), 5 more terminally

differentiated B cells (1 naive B cell, 1 centroblast CB, 1 centrocyte

CC, 1 memory B cell, 1 CD19+cell), and 4 preB-ALL cancer

samples. Without providing SPD any information on the known

differentiation stages of the sample, we tested whether SPD could

recover the progression underlying this dataset, which is known to

be: HSC, CLP, proB, preB, IM, naiveB/CB/CC/memoryB/

CD19+. Another objective was to determine whether the preB-

ALL would be grouped near its preB cell origin.

SPD selected ten gene modules (composed of 2388 genes in

total) which supported a common progression. Based on these

modules, an overall MST was constructed to describe the

underlying progression. After obtaining the overall MST, samples

were color-coded according to their known classifications, as

shown in Figure 3(a). The identified progression was consistent

with the known stages of normal B-cell differentiation, except for a

missing link between immature B cells and the next more

differentiated B cells (naiveB/CB/CC/memoryB/CD19+). The

link between preB-ALL cancer samples and their cell origin

(normal preB cells) was identified.

The link between immature B cells and more differentiated B

cells was missing, partly because MSTs do not allow for cycles. We

hypothesized that if we removed the cancer samples and the

outliers that are grouped next to the cancer samples, the missing

link would be restored. To test this, we removed the cancer

samples and the outliers, and performed SPD analysis again. The

resulting MST was consistent with the stages of normal B-cell

differentiation, as shown in Figure 3(b).

Annotations of the selected modules can be found in Supplement

Text S1. Some modules contained genes that relate to B-cell

differentiation but are generic in their function. Examples include

proliferation genes (p~3|10{12, hypergeometric test), which are

highly expressed in germinal center B-cells that are undergoing rapid

expansion, but down-regulated at other stages. SPD also recovered

modules of genes that are specific to B-cell differentiation. These were

enriched in genes that are known markers of, or mechanistically

related to, B-cell differentiation such as CD19, CD20, CD79 (B-cell

receptor), and the master transcription factors PAX5 and SP140. We

also observed enrichment (p~2|10{7) for genes in the B-cell

receptor (BCR) pathway, which is the key signaling pathway

governing the maturation of B cells.

SPD reveals landscape of embryonic stem cell
differentiation

The two examples in the previous subsections show that SPD is

able to recover non-branching progression patterns. In this

subsection, we demonstrate SPD’s ability to recover branched

progression patterns, using an embryonic stem cell differentiation

dataset. Pluripotent embryonic stem cells (ESCs) are capable of

differentiating into all cellular lineages in the development of a

mature organism. We applied SPD to a dataset of 44 samples of

mouse ESCs and their progeny which had been induced to

differentiate into several lineages by specific interventions, as well

as several differentiated cell types. The interventions included

knockdown of Pou5f1/Oct4 (leading to differentiation to tropho-

blasts), induction of GATA6 (differentiation to endoderm lineage),

treatment with N2B27 medium (differentiation to neural lineages),

and all-trans retinoic acid (RA) induction of embryonic carcinoma

cells to cause differentiation [22]. The data included time series

along each lineage of cells.

When SPD was applied to this dataset, information on the

interventions and the temporal order of the samples were hidden

from the algorithm. SPD identified 35 modules that supported a

common progression, which revealed a landscape of ESC

differentiation into the various lineages. Remarkably, samples

were perfectly ordered in time, with progressively later stages of

differentiating cells radiating outwards from a core cluster of ESC

samples, as shown in Figure 4. A subset of induced pluripotent

(iPS) cells clustered as a group, in close proximity to ESC samples.

Trophoblast stem cells grouped with the trophoblast differentia-

tion lineage, while stromal and fibroblast cell lines were correctly

clustered with mature fibroblasts. The identified modules provided

a fine-scale view of expression changes along each lineage. The

identified modules included ones which changed in a similar

fashion during differentiation of all cell types from ESCs, as well as

ones that were uniquely associated with specific lineages. We

annotated modules by comparison to known gene sets, and by

examining the relationship between their constituent genes using

Ingenuity Pathways Analysis (IPA). Annotation results are

available in Supplement Text S1.

Module 228 was progressively induced in all differentiating

lineages, as shown in Figure 4, and was enriched for genes that are

targets of Suz12 and Ezh1. The latter are members of the Polycomb

complex that functions in maintaining self-renewal in ESCs. Thus

induction of this module is consistent with a general loss of self-renewal

potential in specialized cell types. Similarly, modules 54 and 55

(enriched for Myc targets and genes involved in Oct4 maintenance of

pluripotency) were both down-regulated in each differentiating

Table 1. The topological overlap measure between extracted
sample progression patterns and the true time order.

TOM network distance

SPD 4.33

Module 3 MST 17.33

Module 4 MST 19.33

Module 5 MST 24.00

Module 6 MST 18.33

Module 10 MST 20.17

Module 17 MST 35.67

Module 20 MST 45.57

Module 24 MST 29.33

Module 30 MST 26.00

single linkage HC 42.50

doi:10.1371/journal.pcbi.1001123.t001

Sample Progression Discovery (SPD)
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branch, but at differing rates with respect to each other, with the

strongest muting of expression occurring along the trophoblast

lineage. One module (329) was highly enriched for genes that share

a common pattern of histone H3K27 methylation, and that are

targets of the Ezh2/Polycomb complex. Notably these genes were

progressively down-regulated in all branches except the neural

lineage. This suggests particular subsets of Polycomb targets that are

regulated in a tissue-specific manner. In the opposite direction,

module 65 genes were strongly induced in trophoblast differentiation,

and more modestly in the other branches. This module contained

numerous genes that are induced by shRNA knockdown of the

pluripotency factor Sox2, as well as apoptosis-related genes.

Intriguingly, this module included many genes involved in integrin

signaling and endocytosis signaling. Thus its strong induction in

differentiating trophoblasts (which are involved in placental implan-

tation of the embryo) is consistent with their critical invasive

properties, and the SPD result identifies genes that may be implicated

in this phenotype.

Two modules (3 and 123) were highly specifically regulated

along the trophoblast differentiation branch. IPA analysis of

module 3 indicated that this cluster of genes was highly enriched

with targets of tumor necrosis factor (TNF). This is concordant

with the fact that over-expression of TNFa induces differentiation

of ESC to trophoblasts. In the dataset analyzed with SPD,

trophoblast differentiation was induced by down-regulation of

Oct4. The overlap with TNF targets suggests that these two

mechanisms of induction share commonalities in the gene

expression changes involved in generation of trophoblasts from

ESC. Given the master-regulatory role of Oct4 in maintaining

pluripotency, one hypothesis is that induction of TNF effects

downstream changes in the Oct4 network, while at the same time

producing changes in transcription that lead specifically to

production of trophoblasts. Module 123 was annotated as

associated with cell motility genes. Again, this is consistent with

the invasive character of trophoblasts, and suggests genes that are

involved in mediating this behavior.

Figure 3. SPD applied to gene expression data of B-cell differentiation. (a) Analysis based on all samples in this dataset. (b) Analysis of
normal samples, with cancer samples and outliers next to cancer samples removed. Samples are color-coded according to their classification: HSC
(violet), CLP (blue), proB (light blue), preB (green), immature (yellow), naiveB/CB/CC/memoryB/CD19+ (red), preB-ALL (brown). Circles are added to
highlight each class of samples.
doi:10.1371/journal.pcbi.1001123.g003

Sample Progression Discovery (SPD)
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In summary, SPD perfectly recapitulates the lineages leading to

differentiated cell types generated by targeted manipulations of

ESCs. The differentiation landscape identified by SPD shows

underlying progressive changes in gene expression that represent

both generic processes as well as ones specific to particular

lineages. The genes that constitute the modules supporting the

differentiation tree represent targets for further investigation as to

their role in organism development.

SPD reveals stages of prostate cancer progression
We applied SPD to a prostate cancer microarray dataset [23]. This

dataset contains a total of 163 patient samples, including tissue of

normal prostate from organ donors, normal prostate tissue adjacent to

the prostate tumor (NAP), primary prostate tumor samples, and

metastatic samples. When SPD was applied to this dataset, the clinical

information on the samples were hidden from the algorithm.

In this dataset, the average correlation between genes was small,

consequently, SPD generated modules that contained a small

number of genes. We excluded modules that contained less than 5

genes, leaving 46 coherent modules for subsequent analysis. SPD

selected 12 modules (487 genes in total) with high progression

similarity and derived the tree structure shown in Figure 5(a).

Normal and metastatic samples were enriched at the left and right

ends of the tree. SPD produced a mixture of NAP and tumor

samples in the middle of the tree. A larger fraction of NAP samples

were closer to normal samples, and tumor samples were closer to

Figure 4. SPD applied to mouse embryonic stem cell differentiation data. SPD revealed a landscape of mouse embryonic stem cell
differentiation, where samples were perfectly ordered in time, with progressively later stages of differentiating cells radiating outwards from a core
cluster of ESC samples. Circles were added to highlight each lineage. Nodes were color-coded by the expression level of a gene module (blue means
low expression; green/yellow means medium; red means high expression). Module 228 was progressively induced in all differentiating lineages, and
was enriched for Suz12 and Ezh1 targets. Module 3, enriched by TNF targets, was highly specifically regulated along one lineage, the trophoblast.
doi:10.1371/journal.pcbi.1001123.g004

Sample Progression Discovery (SPD)
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the metastatic samples. The mix of NAP and tumor samples

reflects possible field effect [23], which suggested that normal

tissue adjacent to primary tumor is more similar to the primary

tumor than it is to normal tissues. The general trend in Figure 5(a)

reflected a progression consistent with disease stages. In addition,

we observed details that we did not expect: a few normal samples

were mixed with tumor samples; and the metastatic samples

appeared to form two branches.

To interpret the tree, we color-coded the nodes using the average

gene expression of each of the 12 modules, and observed three

expression patterns. Representative modules of the three patterns are

shown in Figure 5(b), (c) and (d). Color-codes of other modules are

available in Supplement Text S1. Module 2 and three other modules

are gradually down-regulated from normal to tumor and metastatic

samples, whereas module 32 and two other modules are gradually up-

regulated. Interestingly, we observed that the expression of module 19

and four other modules first increase from normal to tumor and then

gradually decrease in metastatic samples. Several modules show clear

difference between the two branches in the upper right corner, i.e.

Figures 5(c), (d) and several modules shown in Supplement Text S1.

The expressions of these modules indicate that the metastatic samples

can be further divided into two subtypes.

We used Gene Set Enrichment Analysis to annotate the

modules that are up-regulated in primary tumor while down-

regulated in both normal and metastatic samples. We noticed that

these modules overlapped with genes involved in metastasis in

several epithelial cancers (not just prostate studies). They may

reflect general processes underlying the epithelial-mesenchymal

transition and cell migration. Of note, one of the genes in this

module is CDH3, a member of the cadherin family that interacts

with CDH1. Targeted down-regulation of cadherins by RNA

interference has been demonstrated to induce cell migration.

However, up-regulation from normal to primary tumors followed

by down-regulation in metastases has not been commented upon

previously. We also applied IPA to the genes that comprised these

modules. The most significant interaction network centered

around genes involved in androgen and estrogen signaling, and

influenced by beta-estradiol. Although estradiol is the predomi-

nant sex hormone in females, it is also produced in males as a

metabolic product of testosterone. Androgen signaling generally

has a pro-survival effect in prostate cancers. Thus one possible

interpretation of the SPD result is that it reflects the fact that in

primary tumors, androgen signaling up-regulation confers a

selective advantage in the natural history of the tumor; but that

some metastases develop androgen-independence. A priori, from

gene expression profiles, it is unknown which metastases are

androgen-independent; hence SPD may be identifying both

androgen-independent samples, together with the genes whose

changes in expression drive the phenomenon.

Discussion

SPD is a new approach to infer progression among microarray

samples and identify genes that drive the progression. SPD

Figure 5. SPD applied to a prostate cancer dataset and derived a tree structure that describes the underlying progression. (a) Nodes
were color-coded according to their classification: normal, normal adjacent to tumor (NAP), tumor, metastatic samples (Mets). In (b), (c) and (d), nodes
were color-coded using the average expression of modules 2, 32 and 19, respectively, in order to show how the expression of these modules
gradually change during the progression.
doi:10.1371/journal.pcbi.1001123.g005

Sample Progression Discovery (SPD)
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represents a new class of machine learning algorithms that has not

been extensively applied to microarray analysis. The more

common machine learning algorithms that have been used to

analyze microarray data include unsupervised clustering [19,24],

supervised classification [25,26,27,28], and statistical tests for

differential expression [20,29]. Although these algorithms are

quite different from each other, they share a similar goal, which is

to identify differences between different sample groups, i.e. normal

vs. cancer. When applied to study a progressive biological process,

these methods essentially bin the process into stages and identify

differences between sample groups from consecutive stages of the

progression. SPD differs significantly in this regard. Instead of

assuming that samples in the same group are similar and focusing

on the differences between groups, SPD treats individual samples

as different points along an unknown biological progression, thus

has the potential to discover how samples progress both within and

across groups. As mentioned earlier, recovery of an ordering from

unordered samples has been studied in several fields, computer

vision, [7], genetic linkage analysis [8,9,10], microarray time series

[11,12]. However, due to lack of ways to automatically select

meaningful features, the direct application of these approaches

cannot address the challenges of extracting unknown progression

from microarray data. In contrast, SPD is unique in its ability to

simultaneously identify both the progression relationship among

samples and the genes that are associated with the progression,

without prior knowledge or manual gene selection.

SPD shares some similarities with bi-clustering, since both

methods attempt to simultaneously organize genes and samples.

However, the results of SPD and bi-clustering are quite different

from each other. Bi-clustering organizes genes into clusters, and

each gene cluster stratifies samples in a potentially different way.

In contrast, SPD has a module selection step which selects the

gene modules that are similar in terms of progression. The selected

modules support a common progression pattern among the

samples, defined by a single overall MST which is constructed

based on all the genes in the selected modules.

In SPD, we propose a new similarity measure, namely the

progression similarity. This measure evaluates the similarity

between gene modules based on whether they are concordant

with common progression patterns represented by MSTs. In

contrast to correlation and regression-based methods [14,15,16]

where the expression profiles of gene modules are directly

compared with each other, SPD evaluates progression similarities

between gene modules via MSTs. We have shown that modules

that are similar in SPD do not necessarily correlate with each

other; this demonstrates that SPD is able to identify similarities

that correlation and regression-based analyses may miss.

As demonstrated in the analysis of the cell cycle time series and

B-cell differentiation microarray data, SPD is able to discover the

biological progression underlying a microarray dataset, while

simultaneously selecting the genes that are known to be central to

this progression. When applied to these datasets, SPD was not

provided the information on the known ordering of the samples,

and instead derived the ordering in an unsupervised fashion.

Because the SPD-derived ordering is consistent with the time

order of the samples, time represents the strongest progression

signal, and the gradual shifts of the identified gene modules are

associated with the time series experiment. Enrichment of

transcription factors or pathways in the identified modules may

be hypothesized as key drivers of the progression, and subject to

further experimental validation. If the SPD-derived ordering were

different from the time order, the strongest progression signal

would be some factor other than time, which hints at other sources

of variations present in the time series data.

We view SPD as a hypothesis synthesis tool that may have

greatest utility when applied to a microarray dataset where the

underlying biological progression is unknown. For example, when

applied to cancer samples, SPD assumes that there is an intrinsic

progression underlying cancer development, and that the cancer

samples collected from individual patients represent different

stages in this progression. The inferred progression relationship

among the cancer samples may therefore indicate a trajectory or

hierarchy of cancer progression. Under this assumption, SPD

extracts the progression among cancer samples and gene modules

whose gradual shifts are associated with the progression, as

demonstrated on human prostate cancer samples. The identified

progression and gene modules form hypotheses to be validated.

SPD is not limited to microarray data analysis and can be applied

to a variety of high-dimensional datasets, including genomic,

proteomic and image-based data.

Methods

Iterative consensus clustering
Gene clustering reduces data dimension and noise. It is well

known that gene clustering is a difficult optimization problem with

many local minimums, and most clustering algorithms lack

consistency and reproducibility across multiple runs [30]. We

propose an iterative consensus k-means algorithm to derive

consistent coherent gene modules. Our algorithm is an iterative

divisive hierarchical clustering procedure. In every iteration, each

gene module from the previous iteration is divided into two

modules, until our stopping criterion is met. Details of the

algorithm are as follows.

Given an N by M gene expression data matrix, we perform the

k-means algorithm L times, with random initialization, to cluster

the N genes into k = 2 clusters. Clustering results are arranged into

an N by L matrix, where the (i,j) element is the cluster assignment

of gene i in the j’th run of k-means. In order to draw the consensus

of the L runs of k-means, we apply k-means again based on the N
by L matrix, the collection of clustering results of the L runs, to

divide genes into two clusters. For each of the two clusters, the

coherence is computed as the average Pearson correlation between

each gene in the cluster and the cluster mean. If the coherence of a

cluster is higher than a pre-specified threshold c1, this cluster is

considered to be a coherent gene module. Otherwise, this cluster is

further partitioned by iterating the algorithm. After the iterative

process ends, we examine the resulting coherent modules

pairwisely. If the Pearson correlation of two modules’ centers is

higher than a pre-specified threshold c2, these two modules are

merged. This step iterates until no module-pair shares correlation

higher than c2. The stopping criterion of cluster coherence

guarantees that all resulting modules satisfy the pre-specified

coherence threshold c1. Modules that share correlation higher

than c2 are merged, so that the resulting gene modules are not

highly correlated with each other. We typically set the algorithm

parameters to the following values: L~200, c1~0:7, c2~0:9:
The purpose of our consensus k-means algorithm is to derive

coherent modules that are not highly correlated with each other.

Other clustering algorithms that achieve qualitatively similar

performance can be adopted as the clustering component of SPD.

When dealing with microarray gene expression data, without any

prior knowledge of gene modules and the underlying progression,

we find it helpful to cluster co-expressed genes into modules for the

purpose of dimension reduction. On the other hand, if we have

prior knowledge of predefined gene sets that describe pathways

whose progression similarities are of interest, we can use these

genes sets to supplement or replace the clustering results.

Sample Progression Discovery (SPD)
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Constructing minimum spanning tree
SPD constructs minimum spanning trees (MSTs) based on

expression data of subsets of genes, i.e. gene modules. A MST is an

acyclic graph that connects all the samples using minimum total

edge weights. The weight on the edge that connects samples i and

j is defined as the Euclidean distance between the gene expression

of samples i and j. We use Boruvka’s algorithm [31] to construct

one MST based on each gene module. Briefly, we begin with a

disjoint graph with no edges, where each sample is one disjoint

component, and then iteratively add edges. In each iteration, we

randomly pick one of the smallest components, calculate its single

linkage Euclidean distances to all other components, and add an

edge that corresponds to the smallest single linkage distance. This

process iterates until all samples are connected.

Since the MST connects all the nodes using minimum total

edge weights, it tends to connect samples that are more similar to

each other. If we start from one sample and move along the edges

of the MST, we will observe a gradual change of gene expression.

Therefore, the MST reflects the progression among samples,

defined by the gradual change of the set of genes based on which

the MST is constructed.

Statistical concordance between modules and trees
The key step of SPD is the comparison between the expression

of gene modules and trees constructed from other modules. Given

the expression data of a gene module in M samples, we define an

M by M distance matrix D, where Dij is the Euclidean distance

between the gene expression profiles of samples i and j. Similarly,

a tree structure can also be summarized in a matrix form, which is

the adjacency matrix A, where Aij~1 if samples i and j are

directly connected in the tree; otherwise Aij~0. In SPD, we define

the concordance between a gene module and a tree as the

concordance between the distance matrix D and the adjacency

matrix A.

Typically, the statistical concordance between D and A includes

two aspects: (1) the distance between connected samples should be

small, and (2) the distance between not-connected samples should

be relatively larger [32]. In our analysis, we only focus on the

former aspect. Our rationale is that we want to model progressions

where the gene expression first drifts away from an initial state and

then comes back. One such example is the cell cycle. We define

the statistical concordance between a distance matrix D and an

adjacency matrix A as

s~
X

Aij~1

Dij ð1Þ

The meaning of s is the total edge weights jointly defined by the

gene module and the tree. If s is small, the gene module D and tree

structure A are concordant. Large s implies that the gene module

D and tree A are not concordant. In order to derive the p-value of

s, we perform random permutations. We randomly permute the

columns of the expression data, which is equivalent to reshuffling

the rows and columns of the distance matrix D. The p-value is the

probability of obtaining a smaller s during random permutations.

We typically perform 1000 permutations and use a p-value

threshold of 0.002 to determine whether a module and a tree are

sufficiently concordant.

Selecting modules that support common progression
Using Equation (1), we evaluate the statistical concordance

between all the gene modules and all the MSTs. Since each MST

is constructed based on one gene module, a MST and its

corresponding module are concordant by construction. If a

module is concordant with the MST derived from another

module, these two modules are similar in the sense that they

support a common progression pattern.

Based on the statistical concordance between all the modules

and all the MSTs, a progression similarity matrix is derived. The

(u,v) element of the progression similarity matrix is the number of

trees that are concordant with both modules u and v. For

visualization, we re-order the modules by hierarchical clustering

of the columns of the progression similarity matrix [14], so that

we can clearly identify similar modules along the diagonal, via

visual inspection. We explored several algorithms to automati-

cally identify similar modules from the progression similarity

matrix, including hierarchical clustering with gap statistics,

spectral partitioning, and forward and backward selection.

However, there was not a single algorithm and parameter setting

that performed well for all the datasets we analyzed. Since the

number of modules in the progression similarity matrix is usually

small, we decided to perform module selection manually. An

automated algorithm for this step will introduce an additional

parameter which is not as intuitive as manual selection. In the

progression similarity matrix, if there is a diagonal block whose

entries all have relatively high values, i.e. Figure 2(a) and (b), the

corresponding modules are similar because they describe a

common progression. SPD selects these similar modules, and

constructs an overall MST that describes the common progres-

sion supported by the selected modules, which is likely to be

biologically meaningful.

Supporting Information

Text S1 Discovering biological progression underlying micro-

array samples.

Found at: doi:10.1371/journal.pcbi.1001123.s001 (3.56 MB PDF)
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