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The ability to analyze multiple single-cell parameters is critical 
for understanding cellular heterogeneity. Despite recent 
advances in measurement technology, methods for analyzing 
high-dimensional single-cell data are often subjective, labor 
intensive and require prior knowledge of the biological system. 
To objectively uncover cellular heterogeneity from single-cell 
measurements, we present a versatile computational approach, 
spanning-tree progression analysis of density-normalized 
events (SPADE). We applied SPADE to flow cytometry data 
of mouse bone marrow and to mass cytometry data of human 
bone marrow. In both cases, SPADE organized cells in a 
hierarchy of related phenotypes that partially recapitulated 
well-described patterns of hematopoiesis. We demonstrate 
that SPADE is robust to measurement noise and to the choice 
of cellular markers. SPADE facilitates the analysis of cellular 
heterogeneity, the identification of cell types and comparison 
of functional markers in response to perturbations.

Measurement of multiple parameters of single cells by flow and mass 
cytometry has diverse uses in understanding cellular differentiation 
and intracellular signaling cascades, clinical immunophenotyp-
ing, identifying rare stem cell populations and drug targeting using 
intracellular markers, such as phosphorylated proteins. Modern flow 
cytometers typically provide simultaneous single-cell measurements 
of up to 12 fluorescent parameters in routine cases, and analysis of 
up to 17 protein parameters has been reported1. Recently, the first 
commercially available next-generation mass cytometry platform 
(CyTOF) has become available and allows routine measurement of 
30 or more single-cell parameters2.

Despite the technological advances in acquiring an increas-
ing number of parameters per single cell, methods for analyzing 
multidimensional single-cell data remain inadequate. Traditional 
methods are often subjective, labor intensive and require expert 
knowledge of the underlying cellular phenotypes. One common 
but cumbersome step is the selection of subsets of cells in a process 

called “gating”3. A gate is a region, defined in a biaxial plot of two 
measurements, which is used to select cells with a desired phenotype 
for downstream analysis. Gates are either manually drawn using 
software such as FlowJo and FlowCore4, or automatically defined 
by clustering algorithms5–10. Manual gating is highly subjective and 
depends on the investigator’s knowledge and interpretation of the 
experiment. Automatic gating algorithms cluster cells by optimiz-
ing the objective that cells in the same cluster be more similar to 
each other than cells from other clusters. Because these algorithms 
strive to define maximally different clusters, they often miss the 
underlying continuity of phenotypes (progression) that is inherent 
in cellular differentiation11. In addition, optimization objectives of 
most automatic gating algorithms are predisposed to capture the 
most abundant cell populations, whereas rare cell types, such as stem 
cells, are either excluded as outliers or absorbed by larger clusters. 
Some algorithms, such as a recent approach for automated gating 
termed SamSPECTRAL, have begun to include mechanisms for rare 
cell type identification12.

Traditional cytometry data analysis methods also often cannot 
effectively accommodate and visualize the increasing numbers 
of measurements per single cell. For instance, to fully visualize an  
m-dimensional flow data set, m m( )/−1 2  biaxial plots are needed, 
where each biaxial plot displays the correlation of only two measure-
ments at a time. It is difficult to identify the correlations in high-
dimensional data (m ≥ 3) from a series of biaxial plots. One recent 
approach that partly addresses the scalability issue is the probability 
state model, implemented in the Gemstone software package. That 
approach rearranges cells into a nonbranching linear order, according 
to an investigator’s knowledge or expectation of how known markers 
fluctuate along a progression underlying the measured cell popula-
tion13. Because cells are ordered in a nonbranching fashion, a new 
model must be constructed for each mutually exclusive cell type (that is,  
T cells, B cells).

We developed the SPADE approach to extract a hierarchy from 
high-dimensional cytometry data in an unsupervised manner. SPADE 
is complementary to existing approaches for analyzing cytometry data 
by enabling multiple cell types to be visualized in a branched tree 
structure without requiring the user to define a known cellular order-
ing. Through a two-dimensional visualization, SPADE shows how 
measured protein markers behave across different cell types in the 
data; this empowers investigators to identify known cell types and 
to find unexpected ones. Recently, we reported the use of SPADE for 
immunophenotyping without providing a detailed description and 
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analysis of the algorithm14. Here we detail the algorithm by which 
SPADE operates, perform comparison with traditional gating meth-
ods, evaluate its robustness, highlight its applications in identifying 
cell types and intracellular signal activations, and provide the source 
code of SPADE.

RESULTS
Outline of SPADE as applied to a simulated data set
To demonstrate the SPADE algorithm, we analyzed a simulated two-
parameter flow cytometry data set (Supplementary Data Set 1). In 
the simulated cell population, the underlying cellular hierarchy origi-
nated from a rare ‘root’ cell type and differentiated into three distinct 
abundant cell types (Fig. 1). In a traditional gating analysis of the data 
set, four gates would be manually drawn, corresponding to the four 
distinct subpopulations (Fig. 1, i). Alternatively, SPADE views the 
data as a high-dimensional point cloud of cells, and uses topological 
methods to reveal the geometry of the cloud.

SPADE contains four computational modules. First, SPADE per-
forms density-dependent down-sampling to equalize the density in 
different parts of the cloud and achieve equal representation of rare 
and abundant cell types (Fig. 1, ii). Second, SPADE performs agglom-
erative clustering to partition the down-sampled cloud into clusters of 
cells with similar phenotypes, that is, cells displaying similar intensi-
ties of the two markers (Fig. 1, iii). Because the down-sampling step 
makes the abundant and rare cell types relatively equally represented, 
the rare root cells are allowed to form their own clusters and not be 
outnumbered by abundant cell populations during clustering. Third, 
SPADE extracts and summarizes the geometry of the cloud by con-
structing a minimum spanning tree, the tree that connects all clusters 
with minimum total edge length (Fig. 1, iv). Finally, SPADE maps 
each cell in the original data set to the cluster in the tree to which it 
is most similar, a process called ‘up-sampling’. As a result, properties 
of the cells in each cluster can be summarized and displayed on the 
tree. For instance, each node of the tree can be colored according to 
the median intensity of one of the simulated markers of the cells in 
that cluster, which allows visualization of the behavior of that marker 
across the entire heterogeneous cell population (Fig. 1, v). The two 
colored trees contain four branches with distinct phenotypes, shown 
by the manually drawn gray boundaries, which correspond to the 
four simulated cell types. In addition, the gradual change of marker 
intensity values along each lineage is evident.

When visualizing the SPADE tree, an important issue is to deter-
mine how the nodes and connections between them are to be arranged 
in a two-dimensional image. To aid in comprehension of the simu-
lated two-parameter example, we defined the position of each node 
as the median intensities of the two markers of cells in that node. As 
a result, the raw data (Fig. 1, i) and the SPADE tree (Fig. 1, iv) are 
visually similar. For data with higher dimensions, SPADE uses a modi-
fied Fruchterman-Reingold algorithm to automatically compute the 
layout15. Detailed descriptions of the visualization algorithm and the 
four modules of SPADE are provided in Online Methods.

Analysis of mouse hematopoiesis using flow cytometry data
To validate the ability of SPADE to reconstruct a known branched 
cellular hierarchy, we used it to analyze a flow cytometry data set 
from a mouse bone marrow sample (Supplementary Data Set 2). 
Hematopoiesis in mice is well-described (Fig. 2a)16,17, with multi-
potent self-renewing stem and progenitor cells giving rise to all of the 
terminally differentiated cell types. Mature myeloid cells are charac-
terized by expression of the surface antigen CD11b, whereas lymphoid 
cells are negative for this marker. Within the lymphoid population, 
B cells express B220 but not TCRβ, and conversely the majority of  
T cells express TCRβ but not B220. Finally, mature TCRβ-expressing 
T-cells are characterized by mutually exclusive expression of CD4 
or CD8.

When applied to the mouse bone marrow data set, SPADE required 
three user-specified input parameters. We chose the outlier and target 
densities empirically to be the 1st and 5th percentile of local densities 
of all the cells, and the desired number of clusters to be 50 (Online 
Methods). From these data and input parameters, SPADE automati-
cally generated a tree diagram without annotations (Fig. 2b).

To interpret and annotate the SPADE tree, we created several ver-
sions of it, colored according to the median intensity of each measured 
marker. We used the colored trees to manually identify the type of 
cells represented by different parts of the tree. For example, in the tree 
colored according to c-kit intensity, the upper branch in the middle 
showed a clear pattern of high intensity. Therefore, this branch was 
annotated as c-kit+ (Fig. 2c). Similarly, according to the SPADE tree 
colored by CD11b, the left branch showed high intensity. Based on the 
investigator’s familiarity with this immunological system, this branch 
was labeled ‘myeloids’ (Fig. 2d). The remaining annotations labeled 
with B cells, T cells, dendritic cells, CD4+ and CD8+ were derived 
using similar logic (Fig. 2e). Notably, defining the boundaries of the 
annotations did not make use of gating or prior knowledge. From 
these annotations, we observed that different branches corresponded 
to different cell phenotypes. The interconnectivity among these pheno-
types is consistent with known biology of mouse hematopoiesis.

To validate the annotations of the SPADE tree, we compared them 
with the result of expert-based traditional gating analysis, in which 
subpopulations of cells were identified by a series of gates manually 
drawn on biaxial plots (Fig. 2f). The manual gating analysis was per-
formed in a blinded fashion before the SPADE analysis. For each gated 
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Figure 1 Flowchart of SPADE and SPADE analysis of a simulated data 
set. (i) A simulated two-parameter flow cytometry data set, with one 
rare population and three abundant populations. (ii) Result of density-
dependent down-sampling of the original data. (iii) Agglomerative 
clustering result of the down-sampled cells. Adjacent clusters are drawn 
in alternating colors. (iv) Minimum spanning tree that connects the cell 
clusters. (v) Colored SPADE trees. Nodes are colored by the median 
intensities of protein markers of cells in each node, allowing visualization 
of the behaviors of the two markers across the entire heterogeneous  
cell population.
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population, we colored the tree by the percentages of the manually 
gated cells in each node, showing which part of the tree is populated by 
the cells in that gate (Fig. 2g). It can be observed that each gated popu-
lation occupied one branch of the tree. Overall, the SPADE result was 
consistent with traditional gating analysis in identifying biologically  
relevant populations.

Notably, manual gating did not identify the dendritic cells because 
gating is a subjective approach that relies on our prior knowledge 
and we did not plan to find dendritic cells. Only after examining 
the SPADE results did we realize that manual gating could have 
been used to define a TCRβ– B220+ CD4+ dendritic cell population 
(Supplementary Section 1). In contrast, SPADE analysis readily iden-
tified the dendritic cell population as three nodes on the distal end 
of the B220+ branch.

To quantify the difference between the two approaches, we com-
puted the number of cells shared by all possible pairs of gates in the 
gating analysis and annotated regions in the SPADE tree (Table 1). 
Large values in the shaded entries indicate the consistency between 
gating and SPADE, whereas the differences are shown by the remain-
ing entries. Cells in the B-cell gate were identified as B cells and den-
dritic cells in the SPADE tree (Table 1, column 1), consistent with 
Figure 2. The majority of cells in the myeloid gate were annotated by 
SPADE as myeloids, with a small fraction of B cells, T cells and c-kit+ 
cells (Table 1, column 5). On the contrary, few cells in the myeloid 
region of SPADE were regarded as other cell types by gating (Table 1,  
row 6). In mouse bone marrow, c-kit is a marker for immature cell 
types, and the hematopoietic stem and progenitor cells (HSPCs) are 
a subset of c-kit+ cells. The majority of cells in the manual HSPC gate 
belonged to the c-kit+ branch (Table 1, column 6) and were found to 
be localized to one node in that branch of the SPADE tree (Fig. 2g).

We performed two analyses to evaluate the robustness of SPADE. 
First, to evaluate how marker selection affects the SPADE tree, we 
applied SPADE to reconstruct the mouse bone marrow hierarchy 
based on data sets consisting of subsets of the measured markers. We 
initiated SPADE to analyze only one marker, incrementally added 
more markers and evaluated changes in the resulting SPADE tree. 
These analyses demonstrated that the SPADE tree is only altered 
by markers that provide a sufficient amount of new information to 

change the shape of the cloud but not by markers that are highly cor-
related to the ones already included to build the tree (Supplementary 
Section 2). Second, to further evaluate the robustness of SPADE, we 
simulated new data by adding noise to the mouse bone marrow data, 
which already contains experimental noise. Our simulation suggests 
that SPADE can tolerate a small amount of additional noise. When the 
s.d. of the added noise was 5% of that of the data, even though parts 
of the SPADE tree inevitably varied, the overall topology and general 
interpretation were not affected (Supplementary Section 3).

Analysis of human hematopoiesis using mass cytometry data
Next-generation mass cytometry technology currently provides simul-
taneous measurement of 31 or more markers per cell. Such a capacity 
allows enough surface markers to delineate nearly all cell types in 
human hematopoiesis, as well as additional functional markers to 
study cellular response to perturbations. Previously we generated a 
mass cytometry data set of human bone marrow14. Single-cell mea-
surements of 30 individual experiments were obtained (Fig. 3a). One  
unstimulated aliquot of the human bone marrow sample was mea-
sured with an immunophenotyping panel of 31 cell surface antibodies. 
In addition, we measured 5 unstimulated samples and 24 samples  
under different perturbations, using a functional staining panel of  
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Figure 2 SPADE applied to mouse bone marrow flow cytometry data. 
(a) Known hematopoietic hierarchy in mouse bone marrow. (b) SPADE 
tree derived from the mouse bone marrow data. (c–e) Trees colored by 
the median intensity of one individual marker. (f) Traditional gating 
analysis on the mouse bone marrow data. (g) For each gated population, 
one SPADE tree was drawn, where each node was colored according to 
the percentage of gated cells in that node. Thus, the darker regions of 
each tree represent which part of the tree is populated by the cells in the 
corresponding gate. This comparison shows the concordance between 
SPADE and gating results.

Table 1 Comparison of manual gating and SPADE

Annotated SPADE 
branches

Gates in the gating analysis

B cell (150,314) T cell (14,699) CD4+ (2,808) CD8+ (6,055) Myeloid (209,079) HSPC (418)

B cell (152,685) 146,017 (97.1%) 88 (0.6%) 0 0 2,246 (1.1%) 16 (3.8%)
Dendritic (3,996) 3,562 (2.4%) 79 (0.5%) 77 (2.7%) 0 83 (<0.1%) 0
T cell (17,538) 364 (0.2%) 12,377 (84.2%) 2,729 (97.2%) 6,037 (99.7%) 3,033 (1.5%) 0
CD4+ (2,931) 0 2,858 (19.4%) 2,713 (96.6%) 0 27 (<0.1%) 0
CD8+ (6,301) 0 6,174 (42%) 0 5,843 (96.5%) 32 (<0.1%) 0
Myeloid (202,180) 5 (<0.1%) 75 (0.5%) 0 0 199,048 (95.2%) 0
c-kit+ (15,681) 8 (<0.1%) 815 (5.5%) 2 (0.1%) 9 (<0.1%) 1,159 (0.6%) 401 (95.9%)

The total number of cells in each gate and each annotated SPADE region are provided. Each entry in the table gives the number of cells shared by a particular gate and a  
particular SPADE region. Percentages are defined as this number divided by the total number of cells in the corresponding gate, thereby representing the percent of cells in a  
gate that are assigned to each SPADE region. Large values in shaded entries indicate the consistency between manual gating and SPADE.
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13 core surface markers (CD: 3, 4, 8, 11b, 19, 20, 33, 34, 38, 45, 45RA, 
90, 123, from the 31-marker panel) and 18 intracellular targets that 
reflect intracellular signaling states. The 13 overlapping markers  
provide the opportunity to integrate the data of the two staining  
panels into a 49-dimensional data set. Here we detail the use of SPADE  
to integrate these two staining panels, and the use of all 49 dimensions 
to identify cell types and compare multiple perturbation conditions.

We first used SPADE to perform density-dependent down-sampling 
for each individual sample separately. To integrate the two staining 
panels, we applied the clustering step to the subset of the down-
sampled data comprising the 13 overlapping core surface markers 
measured across down-sampled cells in the six unstimulated samples 
(Online Methods). The number of clusters was set to be 300, larger 
than that of the previous mouse bone marrow analysis, because the 
increased number of markers could capture more cell types and branch 
points. SPADE generated a tree (Fig. 3b), which we manually anno-
tated by coloring the tree using each of the 13 core surface markers  
(Supplementary Section 4). The layout of the SPADE tree appears 
different from that reported previously14 because the previous layout 
was manually organized to resemble the classic immunology diagram 
of hematopoietic developmental hierarchy16, whereas the layout here 
was automatically generated (Online Methods).

Many classically defined immune cell subsets were immediately vis-
ible in the SPADE tree. Multiple nodes captured the abundant cell types, 
including B cells (CD19+), T cells (CD3+) and monocytes (CD33+). 
In contrast, rare cell types, such as hematopoietic stem cells (HSC),  
only occupied a single node with high CD34 expression. The pattern 
of interconnectivity between these different cell types partially reca-
pitulated established biology, as exemplified by the central positioning 
of the progenitor cell types, and the co-localization of multiple related 
T and B cell types. These results demonstrate the utility of SPADE to 
reduce a high-dimensional data set to an intuitive tree diagram that 
reflects the relatedness of biological subsets.

One particular group of nodes (Fig. 4) exhibited a consistent CD38+ 
CD45RA+ phenotype (Supplementary Section 5), but the identity of 
this cell type was not clear based on any of the 13 core surface mark-
ers from which the SPADE tree was built. As the SPADE tree was built 
using cells measured by both staining panels, we were able to use the 18 
non-core surface markers in the immunophenotyping panel to color the 
SPADE tree. The unidentified nodes were found to be positive for CD7 
and CD16 (Fig. 4), markers associated with natural killer (NK) cells. 
SPADE was able to cluster the NK cells without using NK-specific mark-
ers because the NK cells express a unique combination of the core surface  

markers CD45+ CD45RA+ CD38+ CD19–, 
which distinguishes them from other cell types. 
These results show that SPADE can identify 
a biologically relevant cell type from high- 
dimensional cytometry data, without using 
markers considered to be standard immuno-
phenotypic indicators of that cell type.

We next discuss how the SPADE tree can 
be used to display the dynamics of intra-
cellular markers under different perturba-
tions. Integration of the two staining panels  
allowed the 18 function markers to be used 
to color the SPADE tree. For any combina-
tion of one intracellular marker and one 
perturbation, SPADE colored the tree accord-
ing to the ratio between the median inten-
sities of the marker in the stimulated and 
unstimulated (basal) conditions, showing 

the changes of the marker in response to the stimulation (Fig. 5).  
The activities of many functional markers supported the annota-
tions derived from the surface markers. We analyzed all 432 SPADE 
trees colored by the measurements of 18 function markers across 
24 different perturbation conditions. From those colored trees, we 
derived a distribution of s.d. of functional marker activities within the 
annotated boundaries. When we randomly permuted the tree nodes, 
we observed that the s.d. of functional markers’ activities within 
the annotated boundaries was significantly smaller than random  
(two-sample student t-test P < 10−25, Supplementary Section 6), 
thus verifying the relevance of the boundaries defined in Figure 3b  
to functional signaling responses in the cell.

Based on the SPADE trees colored by the activities of the functional 
markers, we observed multiple well-established signaling functionali-
ties that were restricted to nodes with the expected manually anno-
tated cell phenotypes. For example, TNF induction of phosphorylated 
MAPKAPK2 was observed in myeloid and NK cell types (Fig. 5a)18; 
the LPS-induced degradation of total IκBα, an indicator of NF-κB 
pathway activation, was restricted to cells of the monocytoid line-
age, which uniquely express the receptor for LPS (Fig. 5b)19. We also 
observed evidence for two unreported hypotheses. First, the induc-
tion of phosphorylated STAT5 after stimulation with thrombopoietin 
(TPO) was expected in HSCs and earlier myeloid progenitors but not 
necessarily in the CD123++ population (Fig. 5c). We inspected the 
raw data and confirmed the presence of a rare but well-defined CD3– 
CD45RA– CD33mid CD38+ CD123++ population that responded to 
TPO through phosphorylation of STAT5 (Supplementary Section 7). 
Although this immunophenotype does not match any reported  
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Figure 3 SPADE applied to human bone marrow data of 30 experiments with two overlapping staining 
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tree derived from this data set. The SPADE tree was annotated according to its colored versions based 
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Figure 4 SPADE tree colored by two NK-specific markers CD7 and CD16, 
which were not used to derive the SPADE tree. The color patterns indicate 
that the nodes contained within the dark black boundary are NK cells.
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immunological population based on the markers at hand, it may 
be a subset of dendritic cell progenitors, which has been previously 
described to exhibit enhanced in vivo expansion and maturation 
into plasmacytoid dendritic cells when TPO is added to the tradi-
tional Flt3-containing growth media20. Second, we observed GM-
CSF-induced phosphorylation of pSyk in myelocytes (Fig. 5d).  
Similar signaling biology has been reported in neutrophils,  
which are the terminally differentiated progeny of myelocytes19, 
but never directly reported in the bone marrow. This analysis 
demonstrates how SPADE can be used to map intracellular signal 
activation of functional markers across the landscape of human 
hematopoietic development.

DISCUSSION
SPADE enables the exploration of high-dimensional cytometry data 
in an objective manner that is scalable with increasing numbers of 
cellular parameters. More importantly, SPADE helps investigators 
infer likely cellular progressions and hierarchies. This can facilitate 
new biological discoveries, including the identification of unexpected 
signaling behaviors or the identification of rare cell types. We applied 
SPADE to a mouse bone marrow flow cytometry data set and a human 
bone marrow mass cytometry data set. In both data sets, SPADE was 
able to recover a hierarchy that illustrated known biology. In addition, 
we demonstrated that SPADE could be used to identify functionally 
distinct cell types and to study the activities of functional markers in 
response to perturbations.

The SPADE algorithm consists of four components (Fig. 1):  
density-dependent down-sampling, agglomerative clustering, linking 
clusters with a minimum spanning tree and up-sampling to restore all 
cells in the final result. This modular process allows more efficient sub-
algorithms to replace the current components. In this sense, SPADE can 
be viewed as a framework for cytometric data analysis and visualization 
that has the capacity to be refined and adapted for new uses.

Algorithmically, SPADE is complementary to, and offers certain 
advantages over, traditional methods for analyzing cytometric data. 
First, SPADE does not require the user to impose a predefined hier-
archical ordering of the cells using prior knowledge. Second, SPADE 
is suited for identifying rare cell types as it uses a density-dependent 
down-sampling scheme, which prevents the abundant cell types from 
dominating the statistics of the subsequent analysis. Finally, SPADE 
produces an easily visualized branching tree structure that in part 
recapitulates the branched cellular hierarchy that links related cell 
types. The resulting tree structure can be colored to display how sur-
face and functional markers behave across the entire heterogeneous 
cell population.

The utility of SPADE is perhaps most limited by the choice of mark-
ers that are measured in the experiment and the subset of those that 
are used for building the SPADE tree. For instance, if the tree structure 
is built with a marker set that is not related to cellular progression, one 
might not expect to recover the known lineage relationships. In prior 
work on gene expression data analysis21, we presented a potential 
approach for computationally selecting meaningful markers. Using a 
concept termed ‘progression similarity’, we identified subsets of genes 
that are concordant with a common hierarchical structure. As more 
markers can be measured on individual cells, this concept can be 
extended to cytometric data, as a means to select protein markers 
that support a common cellular hierarchy. In this manner, the utility 
of SPADE has the potential to increase as the number of markers per 
single cell increases. SPADE is intended to automatically produce 
intuitive representations of high-dimensional single-cell data that 
serve as exploratory tools for analysis.

In summary, SPADE is a versatile approach for analyzing high-
dimensional point clouds. It was applied to cytometric data in this 
analysis, but it is broadly applicable to a variety of biological and non-
biological data sets that can be modeled as high-dimensional point 
clouds. We have implemented SPADE in MATLAB and the source 
code is available (Supplementary Data Set 3).

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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Figure 5 SPADE trees that describe the cell type–dependent behavior 
of functional markers in response to perturbations. (a) After stimulation 
with TNF, phosphorylated MAPKAPK2 was observed in myeloid and NK 
cell types, but not in other cell types. (b) After stimulation with LPS, 
degradation of total IκBα was restricted to the monocytoid lineage.  
(c) TPO-induced phosphorylated STAT5 was observed in HSCs 
and CD123++, but not in other cell types. (d) GM-CSF–induced 
phosphorylation of pSyk was observed only in myelocytes.
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ONLINE METhODS
Flow cytometry analysis of mouse bone marrow. Bone marrow was collected 
from the femurs and tibia of 6- to 10-week-old C57BL/6 mice. Cells were stained 
for 30 min at 4 °C in FACS buffer (PBS + 0.5% BSA + 0.02% NaN3). The follow-
ing markers were used in staining: c-kit, Sca-1, CD150, CD11b, B220, TCRβ, 
CD4 and CD8. All animal studies were done in compliance with the Stanford 
Administrative Panel on Laboratory Animal Care Protocol 15986. Data were 
collected using the Becton-Dickinson LSR2 flow cytometer, and transformed 
using inverse hyperbolic sine transformation22. One initial gate was applied 
based on forward and side scatters to exclude doublets and debris.

Mass cytometry analysis of human bone marrow. Next-generation mass 
cytometry data were obtained from reference 14. Briefly, fresh adult healthy 
whole human bone marrow (BM) was purchased from All Cells, where it 
was collected under an Institutional Review Board–approved protocol. Ficoll-
separated bone marrow mononuclear cells were stimulated using 24 unique 
perturbation conditions, fixed with paraformaldehyde, stained for surface 
markers, washed, permeabilized with methanol, stained for intracellular 
markers, washed, stained with an iridium-tagged DNA intercalator, and then 
measured on the CyTOF mass cytometer (DVS Sciences).

Overview of SPADE. SPADE is performed in four steps. (i) Density-dependent  
down-sampling to equalize the density in the point cloud of cells,  
(ii) agglomerative clustering to partition the point cloud of cells into cell clusters,  
(iii) minimum spanning tree construction to link the cell clusters and  
(iv) up-sampling to map all the cells onto the resulting tree structure.

(i) Density-dependent down-sampling. SPADE views a cytometry data set 
as a high-dimensional point cloud, where each point in the cloud is one cell 
and the dimension of the cloud is the number of cellular markers. Dense 
regions of the cloud correspond to abundant cell types, whereas low-density 
regions correspond to rare cell types or cells in transition between abundant 
cell types. Most clustering algorithms rely on the density variation to identify 
abundant cell types6–10,12. In contrast, SPADE down-samples the data in a 
density-dependent fashion to remove the density variation.

SPADE estimates the local density (LDi) for cell i, defined as the number of 
cells within its neighborhood. We use an L1 distance metric to compute the 
distance between cells. The size of the neighborhood is chosen such that most 
cells have at least one neighbor (see pseudo-code in Supplementary Section 8).  
According to the target density (TD) and outlier density (OD), SPADE keeps 
each cell i with the following probability: 
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Thus, cells whose local densities are <OD are discarded. Cells whose local 
densities are between OD and TD are not down-sampled. Cells in high-
density regions are heavily down-sampled such that their local densities are 
reduced to TD. The target density can be defined by the local density of the 
rare cell types of interest. In the simulated data (Fig. 1), we chose OD and TD 
to be the 1st and 3rd percentiles of the local densities of all the cells. SPADE 
down-sampled the data from 20,000 cells to ~4,000 cells. Although the size 
of the data was significantly reduced, most cells of the rare cell type remained 
after down-sampling, and the shape of the point cloud was preserved.

The purpose of density-dependent down-sampling is to increase the preva-
lence of rare cells, so that SPADE is able to identify them in the subsequent 
clustering and tree construction steps. However, down-sampling also increases 
the prevalence of nonspecific noise events whose local densities are >OD. This 
is a trade-off between signal and noise.

(ii) Agglomerative clustering. SPADE employs a variant of an agglomerative 
hierarchical clustering algorithm. At the beginning of the first iteration of 
the agglomerative process, each cell forms its own cluster. One cell is ran-
domly chosen and grouped with its nearest neighbor, defined by single linkage  

L1 distance. Then, another cell is randomly chosen from the remaining cells 
and grouped with its nearest neighbor, if the nearest neighbor has not already 
been grouped with other cells in the current iteration. After all the cells are 
examined (that is, either chosen or grouped with other cells), the first iteration 
ends and the number of clusters is reduced by approximately half. The same 
procedure is repeated in the second iteration to further reduce the number 
of clusters by approximately half. The iterative process continues until the 
number of remaining clusters reaches a user-defined threshold. Clustering 
simplifies the point cloud, distilling it into abutting cell clusters that span the 
full space occupied by the original cloud. The scale of the simplification can 
be controlled by adjusting the desired number of clusters.

(iii) Minimum spanning tree construction. SPADE uses Boruvka’s algo-
rithm23 to construct a minimum spanning tree (MST) that links the cell clus-
ters. Each cell cluster is one tree node, and is represented by its median marker 
expressions. Briefly, we start from a graph with no edges, and iteratively add 
edges. In each iteration, we randomly select one connected subgraph, calcu-
late its single linkage L1 distances to all nodes outside the randomly selected 
subgraph, and add an edge that corresponds to the smallest single linkage 
distance. This process iterates until all nodes are connected. As the MST tends 
to connect clusters that are close to each other to achieve the minimum total 
edge length, the resulting tree approximates the shape of the point cloud.

(iv) Up-sampling. To calculate the median intensity and other statistics of 
each cluster with high accuracy, SPADE performs up-sampling by assigning 
each cell in the original data set to one cluster. For each cell in the original 
data set, SPADE finds its nearest neighbor in the down-sampled data (subset 
of data used in clustering), and assigns this cell to the cluster that the nearest 
neighbor belongs to.

Visualization of the SPADE tree. SPADE produces the topology of a tree struc-
ture. When visualizing the SPADE tree, we can arbitrarily rotate the layout, alter 
the angles between branches or change the length of the edges. These operations 
change the appearance of the SPADE tree. However, as long as the topology is 
not changed, it still represents the same result. To automatically determine a 
layout of the SPADE tree, we used a modification of the Fruchterman-Reingold 
algorithm15. The layout algorithm works as follows: we first find the longest path 
in the tree, and fix nodes in the longest path on an arch-like curve. The rest of 
the tree nodes are gradually appended to the main arch. When a new node and 
a new edge are appended to the set of nodes that are already visualized, the posi-
tion of the new node is determined by simulating (i) a repelling force between 
each existing node and the new node, and (ii) an attracting force generated by 
the new edge. The simulated physics system is the reason why smaller branches 
are oriented pointing outwards from the main arch.

Annotation and interpretation of the SPADE tree. After visualizing the 
SPADE tree and overlaying colors on the tree nodes, we derive annotations 
manually, according to the colored trees. The boundaries are manually drawn 
to separate regions that show drastically different colors. Gating and prior 
knowledge are not used to draw the boundaries. Prior knowledge is used to 
interpret the biological relevance of each tree region. Although the annota-
tion of the SPADE tree involves a certain level of subjective interpretation, we 
believe that SPADE is less subjective than gating because the interpretation 
is guided by the SPADE tree, which encodes an objectively derived topology 
among all cell types underlying the data. In contrast, gating analysis is entirely 
guided by the user’s prior knowledge, and each gating plot only displays a two-
dimensional (2D) subset of the data where even the order that cell populations 
are gated in can drastically affect the endpoint subsets. SPADE ‘see’ all the 
dimensionality that even multiple 2D gating plots miss.

Parameter selection for SPADE analysis. The input parameters of SPADE 
include: markers used to build the SPADE tree, outlier density, target density 
and desired number of clusters. The main tuning parameters are the markers 
to use and the desired number of clusters.

Choice of markers used in SPADE relies on the user’s prior knowledge of 
which markers can be used to organize the cellular heterogeneity underlying 
the data. This input is important because the shape of the cell cloud may be  
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different when different sets of markers are used (see Supplementary Section 2).  
Owing to the correlation among protein markers, as long as the majority of 
selected markers are meaningful, SPADE is robust to exclusion of a few mean-
ingful markers or inclusion of irrelevant ones. In the human bone marrow 
analysis, even when NK-specific markers were not used, SPADE clustered the 
NK cells together (Fig. 4). In this data set, CD90 did not provide an informa-
tive signal but was among the 13 surface markers used by SPADE, and SPADE 
still produced a meaningful tree.

Outlier density is used to exclude cells with the lowest local densities. If it 
is set to the 1st percentile of local densities of all the cells, the bottom 1% of 
cells with lowest local densities are regarded as noise and discarded. Note that 
such a choice does not necessarily mean that rare stem cells (that is, 0.2% of 
the population) will be discarded. If the stem cells are similar to each other 
and form a ‘clique’, their local densities could be much higher than cells that 
represent noise. In all our current analyses, we choose outlier density to be the 
1st percentile of the local densities.

Target density determines how many cells will survive the down-sampling 
process. The choice depends, in part, on the density of the rare population 
that the user aims to detect. Another purpose of this parameter is to reduce 
the number of cells, so that the subsequent clustering step is computationally 
more tractable. Ideally, we would like to set the target density comparable to 
the local density of the rare cells. However, when there is no prior knowledge 
of which cells are the rare cells, it is difficult to optimize the value of the 
target density. In the mouse bone marrow analysis, the choice of 5th per-
centile was empirical. In the human bone marrow analysis, because we were 
pooling multiple data sets and we wanted different data sets to contribute an 
equal number of cells, we varied the target density such that a fixed number 
of 20,000 cells would survive the down-sampling step for each data set. For 
most of our current analyses, we chose the target density to produce 20,000 
cells after down-sampling.

The desired number of clusters determines the stopping criterion of the 
agglomerative clustering process and the number of nodes in the SPADE tree. 
If the number of clusters is too small, the SPADE tree cannot correctly capture 
the shape of the cloud. If this number is too large, the SPADE tree is not easily 
interpretable. The choice of this parameter depends on the complexity of the shape 
of the cloud. We suggest that this parameter be set much larger than the number 
of expected subpopulations in the data. In the mouse and human bone marrow 
analysis, if we double this parameter, roughly every tree node will be split into two, 
and the general topology of the resulting tree will remain the same. In our current 
practice, the desired number of clusters is usually set to be 50, 100 or 300.

SPADE for comparing multiple data sets. SPADE can be used to compare 
multiple experiments, with overlapping staining panels. After separately down-
sampling the data from each individual experiment, we can pool the down-
sampled data into a meta-down-sampled data set, which is a meta-cloud that 
represents where a cell may be in the high-dimensional space defined by the 
markers that are common across the experiments, that is, the 13 core surface 
markers in the human bone marrow data set. The SPADE tree represents the 
shape of the meta-cloud. By coloring the tree using the common markers, we 
can annotate the tree and sketch out the phenotypic landscape of the meta-
cloud. For a marker that varies across experiments, its behavior can be visual-
ized by contrasting its intensities across different experiments. Furthermore, 
cells in one experiment may not populate the entire meta-cloud. We can color 
the tree using the change of cell frequencies between difference experiments, 
which allows us to observe whether any phenotypes emerge or disappear in 
response to perturbations.

22. Kotecha, N., Krutzik, P.O. & Irish, J.M. Web-based analysis and publication of flow 
cytometry experiments. Curr. Prot. Cytom. 53, 10.17.1–10.17.24 (2010).

23. Pettie, S. & Ramach, V. An optimal minimum spanning tree algorithm. JACM 49, 
49–60 (1999).
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